首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apparent and inherent optical properties in the coastal lagoon of Fogliano were measured in three seasonal surveys in 2002. Irradiance data from in situ measurements of ultraviolet and visible wavebands permitted to estimate the related attenuation coefficients. Laboratory extinction measurements on filtered (0.22 microm) and unfiltered water samples were also performed. The integrated approach between in situ and laboratory measurements allowed the determination of the role of the suspended and dissolved matter in the attenuation and extinction of ultraviolet and visible radiation within the water column. As noted, the impact of the suspended and dissolved matter on the lake optical quality was influenced by wind resuspension of particulate matter: the relative role of dissolved matter in the absorption of UV and visible radiation was prevailing at low wind velocity conditions (less than 2.2 m s(-1)), while at high wind velocities (3.9 m s(-1)), particulate matter resuspension strongly influenced the attenuation and the extinction measurements. The extinction in the analyzed wavelengths of filtered and unfiltered water samples and the in situ irradiance measurements allowed us to define new optical parameters and important correlations with limnological and classical optical measurements. By sampling at high spatial resolution (18 stations in 4 km2), it was possible to evidence a spatial gradient of the optical and limnological properties, these distributions showed a consistent pattern in all three surveys, and were important for the characterization of the chromophoric dissolved organic matter that was estimated with the spectral slope of the extinction curve spectra. A relatively higher spectral slope was found in the southern basin with respect to the northern, where the maximum values of the attenuation coefficients and limnological parameters were found. These results suggest different sources of dissolved organic matter and/or a different level of photobleaching.  相似文献   

2.
The impact of photodegradation and mixing processes on the optical properties of dissolved organic matter (DOM) was examined using a distribution of absorption spectral slopes and fluorescence measurements in two Argentine lakes. By examining the variability of the absorption spectral slopes throughout the ultraviolet and visible wavelengths, it was possible to determine which wavelength intervals were most sensitive to dominant loss processes. For DOM photodegradation, results show that increases in the absorption spectral slope between 265 and 305 nm were highly sensitive to increased exposure to solar ultraviolet radiation. A slightly larger wavelength range (265-340 nm) was found to be influenced when both mixing and photodegradation processes were considered, in terms DOM residence time, DOM absorption and UV diffuse attenuation coefficients. This same interval of spectral slopes (265-340 nm) was found to highly correlate with changes in fluorescence emission/excitation in wavelengths that are typically associated with terrestrial humic-like DOM. The identification of specific wavelength intervals, rather than the use of standard wavelength intervals or ratios, improved our ability to identify the dominant dissolved organic matter (humic-like) and major loss mechanisms (photodegradation) in these lakes.  相似文献   

3.
The role of solar UV radiation in the ecology of alpine lakes.   总被引:10,自引:0,他引:10  
Solar ultraviolet radiation (UVR, 290-400 nm) is a crucial environmental factor in alpine lakes because of the natural increase of the UVR flux with elevation and the high water transparency of these ecosystems. The ecological importance of UVR, however, has only recently been recognized. This review, examines the general features of alpine lakes regarding UVR, summarizes what is known about the role of solar UVR in the ecology of alpine lakes, and identifies future research directions. Unlike the pattern observed in most lowland lakes, variability of UV attenuation in alpine lakes is poorly explained by differences in dissolved organic carbon (DOC) concentrations, and depends mainly on optical characteristics (absorption) of the chromophoric dissolved organic matter (CDOM). Within the water column of lakes with low DOC concentrations (0.2-0.4 mg l(-1)), UV attenuation is influenced by phytoplankton whose development at depth (i.e. the deep chlorophyll maximum) causes important changes in UV attenuation. Alpine aquatic organisms have developed a number of strategies to minimize UV damage. The widespread synthesis or bioaccumulation of different compounds that directly or indirectly absorb UV energy is one such strategy. Although most benthic and planktonic primary producers and crustacean zooplankton are well adapted to high intensities of solar radiation, heterotrophic protists, bacteria, and viruses seem to be particularly sensitive to UVR. Understanding the overall impact of UVR on alpine lakes would need to consider synergistic and antagonistic processes resulting from the pronounced climatic warming, which have the potential to modify the UV underwater climate and consequently the stress on aquatic organisms.  相似文献   

4.
The aim of this study was to identify bacterial responses in two shallow lakes from Patagonia to UV-irradiated dissolved organic matter (DOM) coming from different sources. We carried out laboratory experiments in which natural lake water and Potamogeton linguatus leachates were irradiated (UVA-340 fluorescent tubes Q-Panel) or kept in darkness. Natural bacterial assemblages were then incubated in four treatments: natural lake water, irradiated lake water, macrophyte leachate and irradiated macrophyte leachate. We estimated bacterial abundance, composition and activity, and changes in the optical features of DOM. Our results showed that the addition of leachates caused an increase in the DOM mean molecular size. After UV exposure, a high bacterial activity was observed in lake water treatments. On the contrary, carbon uptake by bacteria was reduced in the irradiated leachate treatment. The degree of aromatization in the leachate treatments increased and thus may contribute to a dissolved carbon less available for bacterial activity. Regarding the bacteria assemblage we observed that β -Proteobacteria outcompete the other groups in the leachate treatments, this group being more efficient at utilizing the high molecular weight DOM. These results highlight the importance of UVR interacting with different DOM sources in bacteria responses of shallow lakes.  相似文献   

5.
Seasonal changes in diffuse ultraviolet (UV) and visible light attenuations and inherent optical properties in the lake water were monitored at the pelagic and littoral shallow zones of Lake Biwa which features a broad range of optical conditions within a single large water body. We considered the absorption factors that affect UV attenuation, and clarified the contribution of the absorption of suspended particles and chromophoric dissolved organic matter (CDOM) by multiple regression analyses of the monitoring data. The variability of UV attenuations in the lake demonstrated a strong contrast between the pelagic and the shallow zones. The latter were characterized by turbid systems supplying suspended matter as well as CDOM, whereas the former was far from the turbid systems in the littoral zone or the lake bottom. In this lake, the regulation of UV and light attenuations is rendered competitive by the absorption of suspended particles and CDOM in the lake water, hence, the UV penetration has both spatial and temporal variability based on changes in the physical and biological condition of the lake.  相似文献   

6.
During an annual cycle, Daphnia spinulata collected from a plankton community of Patagonia was exposed outdoors to assess the impact of recently received solar radiation on motility (i.e. swimming speed and gravitaxis). Individual values of these parameters were obtained by video recordings and image analysis at different time intervals during the day. Initial swimming speed varied throughout the year, and changes in speed during exposure were not significantly affected by any waveband used in our experimental design (i.e. PAB, 280-700 nm; PA, 320-700 nm; and P, 400-700 nm). Overall, most of the individuals swam downwards, regardless of the radiation treatment imposed to the samples. We found that multifactor interactions (i.e. not a single parameter explained more than 40% of the observed variability) explained most of our observations on motility parameters. These factors include not only solar radiation, but other physical (underwater radiation field and wind intensity) and biological parameters (food availability, presence of predators and congeners). Our findings indicate that the plankton dynamics in the study site is likely to be governed by a sum of factors which must be taken into account when considering solar radiation effects on aquatic ecosystems.  相似文献   

7.
溶解有机物对控制海洋和淡水水生系统的化学、生物和物理特性有重要的影响.光化学降解溶解有机物改变了生态体系的溶解有机碳、有机物的分子量及光学特性,并且产生复杂的反应性氧化合物、二氧化碳、一氧化碳、小分子量的有机酸、氨基酸、二硫化碳等,对生物过程有重要的影响.本文简要综述了光化学降解溶解有机物的过程机理及其对生物过程的影响.  相似文献   

8.
Fringing coral reefs provide a unique opportunity to study shallow aquatic ecosystems. A fringing coral reef system located in close proximity to a developed region was considered in this study. In such an environment, the rate of decay of dissolved organic matter is high and the penetration of higher energy ultraviolet‐B (UVB) extends a greater influence on species diversity, particularly upon shallow benthic communities. Results from a 9 month subsurface UVB exposure measurement campaign performed at a site located on the southern Queensland coast (Hervey Bay, 25°S) are presented in this research. For this, a novel dosimetric technique was utilized to measure long‐term subsurface UVB exposures. The resultant data set includes exposure measurements made during the significant La Niña event of late 2010 which resulted in unprecedented high sea surface temperatures and severe flooding across eastern Australia, impacting upon the lagoon regions of the Great Barrier Reef and Queensland's southern estuaries, including the study site. The influence of season, diurnal tidal variation, cloud cover and solar zenith angle were analyzed over the campaign period. Mean minimum daylight water depth was found to be the most significant factor influencing subsurface UVB.  相似文献   

9.
The aquatic photochemical behavior of the biocide dichlofluanid has been studied under natural sunlight conditions as well as under artificial solar irradiation in different types of natural waters (sea, river and lake water) as well as in distilled water. In order to examine the effect of dissolved organic matter (DOM), the photodegradation of the tested biocide was investigated also in the presence of various concentrations of humic and fulvic acids. It was found that the photodegradation proceeds via first-order reaction in all cases and that the presence of various concentrations of DOM inhibits the photolysis reaction. Kinetic experiments are monitored with GC–ECD with half-lives varied between 8 and 83 h. The major photodecomposition products identified by GC–MS were dichlorofluoromethane, aniline, and DMSA. Based on this byproduct identification a possible degradation pathway is proposed for the photolysis of dichlofluanid in aqueous media.  相似文献   

10.
Global UV radiation was measured with a portable multichannel filter radiometer at the surface and underwater in a high mountain lake (2417 m above sea level) of the Austrian Alps during 16 days in summer 1995. During this period, total column ozone values that changed only by 34 Dobson units explained a significant part of the variability in UVB radiation at 305 nm as indicated by the negative correlation with the ratio 305:340 nm (rs= -0.810, P < 0.01). High radiation at the surface combined with high water transparency allowed substantial UVB radiation to reach the bottom of this lake. The diffuse attenuation coefficient for downward irradiance at 305 nm changed within 2 weeks from 0.24 m-1 (10% at 9.6 m depth) to 0.32 m-1 (10% at 7.2 m depth). This change in attenuation was related to the development of phytoplankton after the ice break-up as indicated by a six-fold increase in chlorophyll-a concentrations during this period. Our results suggest that phytoplankton and/ or phytoplankton-derived organic substances are important for the UV attenuation in this oligotrophic lake.  相似文献   

11.
Spectral Irradiance in Pond Water: Influence of Water Chemistry   总被引:2,自引:0,他引:2  
Knowing the depth of UV penetration in ponds and the chemical variables that control underwater spectral irradiance is a prerequisite to predicting the influence of UV on amphibians and other pond organisms. The present study found that over 99% of UVB (280–315 nm) radiation was attenuated in the top 10–20 cm of ponds sampled on the edge of the Canadian Shield near Peterborough, Ontario. While the principal attenuating substance was, as in lakes, dissolved organic carbon (DOC), neither DOC nor DOC fluorescence were useful predictors of the attenuation coefficients other than the observation that all values of DOC were high and all attenuation coefficients were also high. The lack of a reliable relationship between DOC and attenuation resulted from differences throughout the season in the fraction of the DOC capable of absorbing radiation (chromophores) and the fraction capable of fluorescing (fluorophores). Attenuation was higher than predicted from DOC during springtime when amphibians lay their eggs. Absorbance coefficients measured using a spectrophotometer proved to be reliable predictors of both UVB and UVA attenuation coefficients measured in the ponds with a spectro-radiometer. While DOC provides an effective sun screen against the direct damage of UV radiation, the high attenuation means that the photochemical activity spread over at least 15 m in the ocean is confined to only a few centimeters in ponds.  相似文献   

12.
13.
In this study, we contrast the fluorescent properties of dissolved organic matter (DOM) in fens and bogs in a Northern Minnesota peatland using excitation emission matrix fluorescence spectroscopy with parallel factor analysis (EEM‐PARAFAC). EEM‐PARAFAC identified four humic‐like components and one protein‐like component and the dynamics of each were evaluated based on their distribution with depth as well as across sites differing in hydrology and major biological species. The PARAFAC‐EEM experiments were supported by dissolved organic carbon measurements (DOC), optical spectroscopy (UV‐Vis), and compositional characterization by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectroscopy (FT‐ICR MS). The FT‐ICR MS data indicate that metabolism in peatlands reduces the molecular weights of individual components of DOM, and oxygen‐rich less aromatic molecules are selectively biodegraded. Our data suggest that different hydrologic and biological conditions within the larger peat ecosystem drive molecular changes in DOM, resulting in distinctly different chemical compositions and unique fluorescent fingerprints. PARAFAC modeling of EEM data coupled with ultrahigh resolution FT‐ICR MS has the potential to provide significant molecular‐based information on DOM composition that will support efforts to better understand the composition, sources, and diagenetic status of DOM from different terrestrial and aquatic systems.  相似文献   

14.
This study examines the effects of natural solar radiation on the metal-binding capacity of dissolved organic matter (DOM). Newington Bog water (35.5 mg L−1 dissolved organic carbon [DOC]) was irradiated for 20 days under UV-B lamps in the laboratory and under natural solar radiation. In the presence of irradiated DOM, IC50 (contaminant concentration required to reduce algal growth by 50%) was significantly decreased with UV-B treatment for four metals: Pb, 64%; Cu, 63%; Ni, 35% and Cd, 40%. Solar radiation also significantly decreased IC50 of Pb (58%) and Cu (49%), DOC concentration (11%), DOM fluorescence (DOMFL, 33%) and DOC-specific UV absorbance. Further experiments on Raisin River water (20.7 mg DOC L−1) exposed to 20 days of artificial UVA and UV-B radiation produced significant decreases in IC50 for Cu (48%) with UV-A and for Pb (43%) with UV-B. DOC concentration was decreased 20% by UV-B and 24% by UV-A. DOMFL decreased 51.5% in the first 5 days of UV-A exposure, an effect that was not observed with the UV-B treatment. The UV-A treatment decreased UV absorbance more at longer wavelengths and over a broader wavelength band than did the UV-B treatment. Change in toxicity with UV irradiation was inconsistent among the metals tested in this study, indicating that some organic metal-binding ligands were more quickly removed or altered than others. The DOM remaining after irradiation appears to be qualitatively different from the unirradiated DOM. The much greater irradiance of UV-A makes its contribution to the removal and/or alteration of DOM at least as important as the influence of higher energy UV-B.  相似文献   

15.
The optical properties of the waters of five different stations, three located in the Messina Strait and two near the Strait (open sea), were analysed. Direct spectral measurements of the downward solar irradiance (290 - 800 nm) at different depths (0.5 m, 7 m, 10 m, 13 m, 20 m) were made using a cosine sensor connected to a spectroradiometer. Water samples were collected in the surface layer and their absorption spectra were analysed. The natural fluorescence profiles, along the water column, were determined using a fluorometer (SBE 911plus - Sea Teach). The spectral attenuation coefficient (K(lambda)), the variation of K(lambda) in different wavelength ranges (deltaK(deltalambda)), the wavelength corresponding to minimum value of K(lambda), the spectral depths of penetration of both 1% and 10% of the sub-surface irradiance values (P(lambda)), the depths of 1% of penetration of UVB, UVA and PAR, the depth ranges of the maxim concentration of Chl a and superficial CDOM were measured at each station. The maximum solar UVB penetration was about 65% of the photic zone and the maximum UVA penetration was nearly 100% (data of the Ionic sea station). Thus, a large part of the photic zone was exposed to UV radiation sufficient to cause a possible reduction in the photosynthetic activity of phytoplankton. The spectral penetration of solar radiation, especially UVB radiation, was significantly different in the three stations of the Strait with respect to the two stations studied in the open sea. This shows that variations in the spectral attenuation along the water column can be used as an indicator of properties of the water body.  相似文献   

16.
Wetlands and tidal marshes in the Rhode River estuary of the Chesapeake Bay act as important sources of dissolved organic carbon and strongly absorbing dissolved organic matter (DOM) for adjacent estuarine waters. The effects of solar exposure on the photochemical degradation of colored DOM (CDOM) were examined for material derived from different sources (estuarine and freshwater parts of the Rhode River, sub-watershed stream, marshes) in this estuarine ecosystem. Consistent with changes in fluorescence emission, absorption loss upon exposure to different portions of the solar spectrum (i.e. different long-pass cut-off filters) occurred across the entire spectrum but the wavelength of maximum photobleaching decreased as the cut-off wavelength of the filter decreased. Our results illustrate that solar exposure can cause either an increase or a decrease in the CDOM absorption spectral slope, S(CDOM), depending on the spectral quality of irradiation and, thus, on the parameters (e.g. atmospheric composition, concentration of UV-absorbing water constituents) that affect the spectral characteristics of the light to which CDOM is exposed. We derived a simple spectral model for describing the effects of solar exposure on CDOM optical quality. The model accurately, and consistently, predicted the observed dependence of CDOM photobleaching on the spectral quality of solar exposure.  相似文献   

17.
Capillary zone electrophoresis (CZE) with UV detection (254 nm) was applied to characterize aquatic dissolved humic matter (DHM) from different environmental sources (lake, river and sea waters, in all 15 different samples). A series of separation examples of DHMs using a polyvinyl alcohol (PVA)-coated silica open tubular capillary were carried out in a phosphate buffer (40 mM) as a background electrolyte at neutral acidity (pH 6.8). The separative power of electropherograms was reasonable and the reproducibility was above the mark. Each electropherogram was characteristic of the corresponding humic sample. Special functional fulvic and humic acids or their overall mixtures separated with XAD, DAX and DEAE sorbing solids as well as the original dissolved organic matter (DOM) were nicely differentiated according to their environmental sources. The PVA coating of open tubular silica capillaries seems to be very potential in electrophoretic characterization and separation of different humic solutes at neutral acidities with low sample concentrations thus permitting a workable technique, in a growing series of CZE studies, for better compared results from different studies.  相似文献   

18.
As part of a wider study into the use of smartphones as solar ultraviolet radiation monitors, this article characterizes the ultraviolet A (UVA; 320–400 nm) response of a consumer complementary metal oxide semiconductor (CMOS)‐based smartphone image sensor in a controlled laboratory environment. The CMOS image sensor in the camera possesses inherent sensitivity to UVA, and despite the attenuation due to the lens and neutral density and wavelength‐specific bandpass filters, the measured relative UVA irradiances relative to the incident irradiances range from 0.0065% at 380 nm to 0.0051% at 340 nm. In addition, the sensor demonstrates a predictable response to low‐intensity discrete UVA stimuli that can be modelled using the ratio of recorded digital values to the incident UVA irradiance for a given automatic exposure time, and resulting in measurement errors that are typically less than 5%. Our results support the idea that smartphones can be used for scientific monitoring of UVA radiation.  相似文献   

19.
Nanometer-scale chemical imaging of epitaxially grown gallium nitride (GaN) and indium nitride (InN) islands is performed using scattering-type apertureless near-field scanning optical microscopy (ANSOM). The scattering of 633 nm laser radiation is modulated by an oscillating metallic probe, and the scattered radiation is detected by homodyne amplification, followed by high-harmonic demodulation, yielding optical near-field scattering maps with a spatial resolution better than 30 nm. The image contrast between InN and GaN, and the tip-sample distance dependence, can be qualitatively explained by a simple dipole-coupling model. The ANSOM images of InN and GaN also show structures that are absent in the topographic counterpart, and these substructures are explained by the variations of the local dielectric environment of InN and GaN.  相似文献   

20.
Spatial measurements of the diffusely scattered sky radiance at a seaside resort under clear sky and slightly overcast conditions have been used to calculate the sky radiance distribution across the upper hemisphere. The measurements were done in the summer season when solar UV radiation is highest. The selected wavelengths were 307, 350 and 550 nm representing the UVB, UVA and VIS band. Absolute values of radiance differ considerably between the wavelengths. Normalizing the measured values by use of direct solar radiance made the spatial distributions of unequal sky radiance comparable. The results convey a spatial impression of the different distributions of the radiance at the three wavelengths. Relative scattered radiance intensity is one order of magnitude greater in UVB than in VIS, whereas in UVA lies roughly in between. Under slightly overcast conditions scattered radiance is increased at all three wavelengths by about one order of magnitude. These measurements taken at the seaside underline the importance of diffuse scattered radiance. The effect of shading parts of the sky can be estimated from the distribution of sky radiance. This knowledge might be useful for sun seekers and in the treatment of people staying at the seaside for therapeutic purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号