首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 62 毫秒
1.
采用基于密度泛函理论的第一性原理计算方法,对未掺杂及La掺杂6H-SiC的电子结构和光学性质进行理论计算.计算结果表明,未掺杂6H-SiC是间接带隙半导体,其禁带宽度为2.045 eV,掺杂La元素,形成P型间接半导体,带隙宽度下降为0.886 eV.未掺杂6H-SiC在价带的低能区,Si-3s、C-2s电子轨道对态密度的贡献较大,在价带的高能区,主要是由Si-3p、Si-3s、C-2p态组成.掺杂后La的5d轨道与6H-SiC的sp~3轨道杂化主要贡献在价带部分,而对导带的贡献相对较小,掺杂后电导率提高.未掺杂时,只有一个介电峰,是价带电子跃迁到导带电子所致,掺杂后有两个介电峰,其中第一个介电峰是由sp~3杂化轨道上的电子跃迁到La原子5d轨道上产生.未掺杂6H-SiC,在能量为10.31处吸收系数达到最大值,掺杂后在能量为7.35 eV处,吸收系数达到最大值.  相似文献   

2.
采用基于密度泛函理论的第一性原理计算方法,对未掺杂及La掺杂4H-SiC的电子结构和光学性质进行理论计算。计算结果表明,未掺杂4C-SiC其禁带宽度为2.257 eV。La掺杂后带隙宽度下降为1.1143eV,导带最低点为G点,价带最高点为F点,是P型间接半导体。掺杂La原子在价带的低能区间贡献比较大,而对价带的高能区和导带的贡献比较小。未掺杂4H-SiC在光子能量为6.25 eV时,出现一个介电峰,这是由于价带电子向导带电子跃迁产生。而La掺杂后,出现3个介电峰,分别对应的光子能量为0.47eV、2.67eV、6.21eV,前两个介电峰是由于价带电子向杂质能级跃迁产生,第三个介电峰是由于价带电子向导带电子跃迁产生。La掺杂后4H-SiC变成负介电半导体材料。未掺杂4h-SiC的静态介电常数为2.01,La掺杂的静态常数为12.01。  相似文献   

3.
本文通过密度泛函理论第一性原理平面波超软赝势计算方法计算了Mn掺杂6H-SiC的电子结构与光学性质。计算结果显示掺杂Mn后的6H-SiC为间接带隙p型半导体,且带隙较本征体有所降低,带隙由2.022 eV降为0.602 eV,电子从价带跃迁所需能量减少。掺杂后的Mn的3d能级在能带结构中以杂质能级出现,提高了载流子浓度,导电性增强。光学性质研究中,掺杂Mn后的介电函数虚部在低能处增加,电子激发态数量增多,跃迁概率增大。掺杂后的光吸收谱能量初值也较未掺杂的3.1 eV扩展到0 eV,反射谱发生红移。由于禁带宽度的降低使得光电导率起始范围得到扩展。  相似文献   

4.
采用基于密度泛函理论的第一性原理计算方法,对未掺杂及Ce掺杂CrSi2的电子结构和光学性质进行理论计算。计算结果表明,未掺杂CrSi2是间接带隙半导体,其禁带宽度为0.392 eV,掺杂Ce元素,仍然是间接半导体,带隙宽度下降为0.031eV。未掺杂CrSi2在费米能级附近主要由Cr-5d、Si-3p态贡献。Ce掺杂后在费米能级附近主要由Cr-5d轨道,Ce-4f轨道,C-2p,Si-3p轨道贡献,掺杂后电导率提高。未掺杂CrSi2有两个介电峰,掺杂后,只有一个介电峰。未掺杂CrSi2,在能量为6.008处吸收系数达到最大值,掺杂后在能量为5.009eV处,吸收系数达到最大值。  相似文献   

5.
基于第一性原理密度泛函理论(DFT)的广义梯度近似(GGA)的平面波赝势法(PBE),计算了4H-SiC的本征体系、过渡金属元素Mo单掺杂4H-SiC体系的电子结构、磁性和光学特性。结果表明:Mo掺杂将导致4H-SiC由本征非磁性变为p型磁性半导体材料,其带隙值由2.88 eV 变为0.55 eV。当Mo掺杂浓度为1.359×1021 cm-3时,磁矩为0.98 ,这表明掺Mo后的4H-SiC材料可以作为自旋电子元器件的备选材料。此外,Mo掺杂4H-SiC体系在(100)和(001)方向的静态介电常数分别为3.780和3.969。介质函数虚部不为0的起始点发生红移,表明掺杂使电子更容易跃迁。  相似文献   

6.
采用基于密度泛函理论的第一性原理计算方法,对未掺杂及稀土材料La掺杂3C-SiC的电子结构和光学性质进行理论计算.计算结果表明,La掺杂引起3C-SiC晶格体积增大,掺杂体系能量更小,掺杂体系的结构更稳定;未掺杂3C-SiC是直接带隙半导体,其禁带宽度为1.406 eV,La掺杂后带隙宽度下降为1.161 eV,La掺杂3C-SiC引入了3条杂质能级,能量较高的1条杂质能级与费米能级发生交叠,另外2条杂质能级都在费米能级以下价带顶之上,La掺杂引起3C-SiC吸收谱往低能区移动,未掺杂3C-SiC的静态介电常数为2.66,La掺杂引起静态介电常数增加为406.01,La掺杂3C-SiC是负介电半导体材料.  相似文献   

7.
袁娣  黄多辉  杨俊升 《计算物理》2017,34(4):475-482
用第一性原理平面波赝势方法对纯AlN和Ag-S共掺杂AlN的结合能、电子结构和光学性质进行计算分析.结果表明:施主杂质S原子的引入可以有效增加受主杂质Ag原子在AlN中的掺杂浓度,降低受主能级,对受主Ag原子起到了激活的作用,Ag-S共掺杂有助于实现高效的p型AlN.体系掺杂后的介电函数虚部和光吸收谱分别在低能区出现新的峰,其吸收边向低能方向偏移,增强了体系对低频电磁波的吸收.  相似文献   

8.
采用基于密度泛函理论的第一性原理平面波超软赝势法,计算了纤锌矿结构Cd1-xMgxSe(x=0,0.125,0.250,0.375)的电子结构和光学性质。结果表明,不同系统的价带顶都主要由Se4p态决定,其位置基本不变;导带底由Se4 s态和Cd5 s共同决定,并且随着掺杂浓度的增加向高能区移动,结果使得带隙展宽,由此使得系统介电函数虚部的峰值和折射率实部的峰值随掺杂浓度的增大而蓝移,计算结果与实验符合。  相似文献   

9.
基于密度泛函理论第一性原理的方法,计算了GaN、C单掺、Mg单掺和C-Mg共掺体系的电子结构和光学性质,计算结果表明:掺杂后,GaN体系的晶格发生畸变,有利于光生空穴-电子对的分离,C-Mg共掺体系结构最稳定,掺杂体系的禁带宽度均减小,其中C-Mg共掺体系的禁带宽度最小,在禁带中引入了杂质能级,说明掺杂可有效降低电子跃迁所需的能量.在光学性质方面,掺杂后,GaN在低能区介电峰和吸收峰均发生红移,且静介电常数增大;其中C-Mg共掺体系的对可见光的吸收最强,极化能力最强,因此C-Mg共掺将有望提高GaN在光催化性能和极化能力.  相似文献   

10.
采用基于第一性原理的密度泛函理论(DFT)赝势平面波方法计算了锰掺杂二硅化铬(CrSi2)体系的能带结构、态密度和光学性件质.计算结果表明末掺杂CrSi2属于间接带隙半导体间接带隙宽度△ER=0.35 eV;Mn掺杂后费米能级进入导带,带隙变窄,且间接带隙宽度△Eg=0.24 eV,CrSi2转变为n型半导体.光学参数发生改变,静态介电常数由掺杂前的ε1(O)=32变为掺杂后的ε1(O)=58;进一步分析了掺杂对CrSi2的能带结构、态密度和光学性质的影响,为CrSi2材料掺杂改件的研究提供r理论依据.  相似文献   

11.
采用基于密度泛函理论的第一性原理计算方法,对未掺杂及B掺杂Mn_4Si_7的电子结构和光学性质进行理论计算.研究结果表明,未掺杂Mn_4Si_7是间接带隙半导体,其禁带宽度为0.786 eV,B掺杂后其禁带宽度下降为0.723 eV. B掺杂Mn_4Si_7是p型半导体材料.未掺杂Mn_4Si_7在近红外区的吸收系数达到10~5 cm~(-1),B掺杂引起Mn_4Si_7的折射率、吸收系数、反射系数及光电导率增加.  相似文献   

12.
采用第一性原理的密度泛函理论赝势平面波方法,计算了未掺杂与B、N单掺杂3C-SiC的电子结构和光学性质.结果表明:掺杂改变了3C-SiC费米面附近的电子结构;B掺杂使得禁带宽度减小,价带顶上移,费米能级进入价带,形成p型半导体;N掺杂使得禁带宽度减小,导带底下移,费米能级进入导带,形成n型半导体.B、N掺杂均提高了3C-SiC在低能区的折射率、消光系数和吸收系数,增强了对红外光谱的吸收.  相似文献   

13.
本文用密度泛函理论的第一性原理,研究了C单掺、Al单掺、C-Al共掺GaN体系的电子结构及光学性质.通过分析发现,与本征GaN相比,掺杂后体系都发生了晶格畸变,其中C-Al共掺GaN体系,较容易形成且禁带宽度明显减小,形成了P型半导体,显著降低了电子跃迁所需要的能量;另外,该共掺体系的静介电常数最大,极化能力最强,介电虚部的主峰向低能区域偏移,并且吸收光谱在可见光范围内产生了红移现象,这都体现了C-Al共掺可以拓展GaN体系对可见光的响应范围.因此,C-Al共掺将有望提高GaN体系的光催化性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号