首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of intermolecular hydrogen bonding on the photophysical properties of N‐methyl‐1,8‐naphthalimide ( 2 ) has been investigated by time‐dependent density functional theory (TD‐DFT) method. The UV and IR spectra of 2 monomer and its hydrogen‐bonded complexes formed with 2,2,2‐trifluoroethanol (TFE) 2 +TFE and 2 +2TFE have been calculated, which confirm the presence of intermolecular hydrogen bonding interactions between the carbonyl groups of the aromatic imide and the hydroxyl group of the polyfluorinated alcohol. The absorption and fluorescence intensities going from 2 monomer via hydrogen‐bonded complex 2 +TFE to 2 +2TFE were found to be gradually enhanced with the wavelength gradually red‐shifted. The enhancements of the fluorescence intensities from 2 monomer to hydrogen‐bonded complexes 2 +TFE and 2 +2TFE were attributed to the decrease of the intersystem crossing (ISC) efficiency from the first excited singlet state S1 1(ππ*) to the second excited triplet state T2 3(nπ*), whose energy was increased relative to its ground state due to the intermolecular hydrogen bonding interactions.  相似文献   

2.
The photophysical properties of 5‐deazaalloxazine and 1,3‐dimethyl‐5‐deazaalloxazine were studied in different solvents. These compounds have higher values of fluorescence quantum yields and longer fluorescence lifetimes, compared to those obtained for their alloxazine analogs. Electronic structure and S0Si transitions were investigated using the ab initio methods [MP2, CIS(D), EOM‐CCSD] with the correlation‐consistent basis sets. Also the time‐dependent density functional theory (TD‐DFT) has been employed. The lowest singlet excited states of 5‐deazaalloxazine and 1,3‐dimethyl‐5‐deazaalloxazine are predicted to have the π, π* character, whereas similar alloxazines have two close‐lying π, π* and n, π* transitions. Experimental steady‐state and time‐resolved spectral studies indicate formation of an isoalloxazinic excited state via excited‐state double‐proton transfer (ESDPT) catalyzed by an acetic acid molecule that forms a hydrogen bond complex with the 5‐deazaalloxazine molecule. Solvatochromism of both 5‐deazaalloxazine and its 1,3‐dimethyl substituted derivative was analyzed using the Kamlet–Taft scale and four‐parameter Catalán solvent scale. The most significant result of our studies is that the both scales show a strong influence of solvent acidity (hydrogen bond donating ability) on the emission properties of these compounds, indicating the importance of intermolecular solute–solvent hydrogen‐bonding interactions in their excited state.  相似文献   

3.
The dynamics of the excited states of 1‐aminofluoren‐9‐one (1AF) and 1‐(N,N‐dimethylamino)‐fluoren‐9‐one (1DMAF) are investigated by using steady‐state absorption and fluorescence as well as subpicosecond time‐resolved absorption spectroscopic techniques. Following photoexcitation of 1AF, which exists in the intramolecular hydrogen‐bonded form in aprotic solvents, the excited‐state intramolecular proton‐transfer reaction is the only relaxation process observed in the excited singlet (S1) state. However, in protic solvents, the intramolecular hydrogen bond is disrupted in the excited state and an intermolecular hydrogen bond is formed with the solvent leading to reorganization of the hydrogen‐bond network structure of the solvent. The latter takes place in the timescale of the process of solvation dynamics. In the case of 1DMAF, the main relaxation pathway for the locally excited singlet, S1(LE), or S1(ICT) state is the configurational relaxation, via nearly barrierless twisting of the dimethylamino group to form the twisted intramolecular charge‐transfer, S1(TICT), state. A crossing between the excited‐state and ground‐state potential energy curves is responsible for the fast, radiationless deactivation and nonemissive character of the S1(TICT) state in polar solvents, both aprotic and protic. However, in viscous but strong hydrogen‐bond‐donating solvents, such as ethylene glycol and glycerol, crossing between the potential energy surfaces for the ground electronic state and the hydrogen‐bonded complex formed between the S1(TICT) state and the solvent is possibly avoided and the hydrogen‐bonded complex is weakly emissive.  相似文献   

4.
Experimental results on various photophysical properties of coumarin‐30 (C30) dye, namely, Stokes' shift (Δv), fluorescence quantum yield (τf), fluorescence lifetime (τf), radiative rate constant (kf) and nonradiative rate constant (knr), as obtained using absorption and fluorescence measurements have been reported. Though in most of the solvents the properties of C30 show more or less linear correlation with the solvent polarity function, Δf= [(ε ‐ 1)/(2ε+ 1) ‐ (n2 ‐ 1)/ (2n2+ l)], they show unusual deviations in nonpolar solvents at one end and in high‐polarity protic solvents at the other end. From the solvent polarity and temperature effect on the photophysical properties of the dye, following inferences have been drawn: ( 1 ) in nonpolar solvents, the dye exists in a nonpolar structure, where its 7‐NEt2 substituent adopts a pyramidal configuration and the amino lone pair is out of resonance with the benzopyrone π cloud; ( 2 ) in medium to higher polarity solvents, the dye exists in a polar intra‐molecular charge transfer structure, where the 7‐NEt2 group and the 1,2‐benzopyrone moiety are in the same plane and the amino lone pair is in resonance with the benzopyrone π cloud; ( 3 ) in protic solvents, the dye‐solvent intermolecular hydrogen bonding influences the photophysical properties of the dye; and ( 4 ) in high‐polarity protic solvents, the excited C30 undergoes a new activation‐controlled nonradiative deexcitation process because of the involvement of a twisted intra‐molecular charge transfer (TICT) state. Contrary to most other TICT molecules, the activation barrier for this deexcitation process in C30 is observed to increase with solvent polarity. A rational for this unusual behavior has been given on the basis of the solvent polarity‐dependent stabilization and crossing of relevant electronic states and the relative propensity of interconversion among these states.  相似文献   

5.
In this work, the time‐dependent density functional theory (TDDFT) method was carried out to investigate the hydrogen‐bonded intramolecular charge‐transfer excited state of 2‐(4′‐N,N‐dimethylaminophenyl)imidazo[4,5‐b]pyridine (DMAPIP) in methanol (MeOH) solvent. All the geometric conformations of the ground state and locally excited (LE) state and the twisted intramolecular charge‐transfer (TICT) state for isolated DMAPIP and its hydrogen‐bonded complexes have been optimized. At the same time, the absorption and fluorescence spectra of DMAPIP and the hydrogen‐bonded complexes in different electronic states are also calculated. We theoretically demonstrated for the first time that the intermolecular hydrogen bond formed between DMAPIP and MeOH can induce the formation of the TICT state for DMAPIP in MeOH solvent. Therefore, the two components at 414 and 506 nm observed in the fluorescence spectra of DMAPIP in MeOH solvent were reassigned in this work. The fluorescence peak at 414 nm is confirmed to be the LE state. Furthermore, the red‐shifted shoulder at 506 nm should be originated from the hydrogen‐bonded TICT excited state. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

6.
The photophysical properties of two energy‐transfer dyads that are potential candidates for near‐infrared (NIR) imaging probes are investigated as a function of solvent polarity. The dyads ( FbC‐FbB and ZnC‐FbB ) contain either a free base (Fb) or zinc (Zn) chlorin (C) as the energy donor and a free base bacteriochlorin (B) as the energy acceptor. The dyads were studied in toluene, chlorobenzene, 1,2‐dichlorobenzene, acetone, acetonitrile and dimethylsulfoxide (DMSO). In both dyads, energy transfer from the chlorin to bacteriochlorin occurs with a rate constant of ~(5–10 ps)?1 and a yield of >99% in nonpolar and polar media. In toluene, the fluorescence yields (Φ f = 0.19) and singlet excited‐state lifetimes (τ~5.5 ns) are comparable to those of the benchmark bacteriochlorin. The fluorescence yield and excited‐state lifetime decrease as the solvent polarity increases, with quenching by intramolecular electron (or hole) transfer being greater for FbC‐FbB than for ZnC‐FbB in a given solvent. For example, the Φ f and τ values for FbC‐FbB in acetone are 0.055 and 1.5 ns and in DMSO are 0.019 and 0.28 ns, whereas those for ZnC‐FbB in acetone are 0.12 and 4.5 ns and in DMSO are 0.072 and 2.4 ns. The difference in fluorescence properties of the two dyads in a given polar solvent is due to the relative energies of the lowest energy charge‐transfer states, as assessed by ground‐state redox potentials and supported by molecular‐orbital energies derived from density functional theory calculations. Controlling the extent of excited‐state quenching in polar media will allow the favorable photophysical properties of the chlorin–bacteriochlorin dyads to be exploited in vivo. These properties include very large Stokes shifts (85 nm for FbC‐FbB , 110 nm for ZnC‐FbB ) between the red‐region absorption of the chlorin and the NIR fluorescence of the bacteriochlorin (λ f = 760 nm), long bacteriochlorin excited‐state lifetime (~5.5 ns), and narrow (≤20 nm) absorption and fluorescence bands. The latter will facilitate selective excitation/detection and multiprobe applications using both intensity‐ and lifetime‐imaging techniques.  相似文献   

7.
The time‐dependent density functional theory (TDDFT) method has been carried out to investigate the excited‐state hydrogen‐bonding dynamics of 4‐aminophthalimide (4AP) in hydrogen‐donating water solvent. The infrared spectra of the hydrogen‐bonded solute?solvent complexes in electronically excited state have been calculated using the TDDFT method. We have demonstrated that the intermolecular hydrogen bond C? O···H? O and N? H···O? H in the hydrogen‐bonded 4AP?(H2O)2 trimer are significantly strengthened in the electronically excited state by theoretically monitoring the changes of the bond lengths of hydrogen bonds and hydrogen‐bonding groups in different electronic states. The hydrogen bonds strengthening in the electronically excited state are confirmed because the calculated stretching vibrational modes of the hydrogen bonding C?O, amino N? H, and H? O groups are markedly red‐shifted upon photoexcitation. The calculated results are consistent with the mechanism of the hydrogen bond strengthening in the electronically excited state, while contrast with mechanism of hydrogen bond cleavage. Furthermore, we believe that the transient hydrogen bond strengthening behavior in electroniclly excited state of chromophores in hydrogen‐donating solvents exists in many other systems in solution. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

8.
The dynamics of the excited states of 3‐ and 4‐aminofluoren‐9‐ones (3AF and 4AF, respectively) are investigated in different kinds of solvents by using a subpicosecond time‐resolved absorption spectroscopic technique. They undergo hydrogen‐bonding interaction with protic solvents in both the ground and excited states. However, this interaction is more significant in the lowest excited singlet (S1) state because of its substantial intramolecular charge‐transfer character. Significant differences in the spectroscopic characteristics and temporal dynamics of the S1 states of 3AF and 4AF in aprotic and protic solvents reveal that the intermolecular hydrogen‐bonding interaction between the S1 state and protic solvents plays an important role in its relaxation process. Perfect linear correlation between the relaxation times of the S1 state and the longitudinal relaxation times (τL) of alcoholic solvents confirms the prediction regarding the solvation process via hydrogen‐bond reorganization. In the case of weakly interacting systems, the relaxation process can be well described by a dipolar solvation‐like process involving rotation of the OH groups of the alcoholic solvents, whereas in solvents having a strong hydrogen‐bond‐donating ability, for example, methanol and trifluoroethanol, it involves the conversion of the non‐hydrogen‐bonded form to the hydrogen‐bonded complex of the S1 state. Efficient radiationless deactivation of the S1 state of the aminofluorenones by protic solvents is successfully explained by the energy‐gap law, by using the energy of the fully solvated S1 state determined from the time‐resolved spectroscopic data.  相似文献   

9.
We have investigated the effect of a series of 18 solvents and mixtures of solvents on the production of singlet molecular oxygen (O2(1Δg), denoted as 1O2) by 9H‐fluoren‐9‐one (FLU). The normalized empirical parameter E derived from ET(30) has been chosen as a measure of solvent polarity using Reichardt's betaine dyes. Quantum yields of 1O2 production (ΦΔ) decrease with increasing solvent polarity and protic character as a consequence of the decrease of the quantum yield of intersystem crossing (ΦISC). Values of ΦΔ of unity have been found in alkanes. In nonprotic solvents of increasing polarity, ΦISC and, therefore, ΦΔ decrease due to solvent‐induced changes in the energy levels of singlet and triplet excited states of FLU. This compound is a poor 1O2 sensitizer in protic solvents, because hydrogen bonding considerably increases the rate of internal conversion from the singlet excited state, thus diminishing ΦΔ to values much lower than those in nonprotic solvents of similar polarity. In mixtures of cyclohexane and alcohols, preferential solvation of FLU by the protic solvent leads to a fast decrease of ΦΔ upon addition of increasing amounts of the latter.  相似文献   

10.
A combined femtosecond transient absorption (fs‐TA) and nanosecond time‐resolved resonance Raman (ns‐TR3) spectroscopic investigation of the photoreaction of 2‐benzoylpyridine (2‐BPy) in acetonitrile and neutral, basic and acidic aqueous solvents is reported. fs‐TA results showed that the nπ* triplet 2‐BPy is the precursor of the photocyclisation reaction in neutral and basic aqueous solvents. The cis triplet biradical and the cis singlet zwitterionic species produced during the photocyclisation reaction were initially characterised by ns‐TR3 spectroscopy. In addition, a new species was uniquely observed in basic aqueous solvent after the decay of the cis singlet zwitterionic species and this new species was tentatively assigned to the photocyclised radical anion. The ground‐state conformation of 2‐BPy in acidic aqueous solvent is the pyridine nitrogen‐protonated 2‐BPy cation (2‐BPy‐NH+) rather than the neutral form of 2‐BPy. After laser photolysis, the singlet excited state (S1) of 2‐BPy‐NH+ is generated and evolves through excited‐state proton transfer (ESPT) and efficient intersystem crossing (ISC) processes to the triplet exited state (T1) of the carbonyl oxygen‐protonated 2‐BPy cation (2‐BPy‐OH+) and then photocyclises with the lone pair of the nitrogen atom in the heterocyclic ring. Cyclisation reactions take place both in neutral/basic and acidic aqueous solvents, but the photocyclisation mechanisms in these different aqueous solvents are very different. This is likely due to the different conformation of the precursor and the influence of hydrogen‐bonding of the solvent on the reactions.  相似文献   

11.
The photophysical properties of 7‐(diethylamino) coumarin‐3‐carboxylic acid (7‐DCCA) were studied in cyclodextrins (α, β, γ,‐CDs), different neat solvents and solvent mixtures by using steady state absorption, emission and time‐resolved fluorescence spectroscopy. We have observed that with gradual increase in concentration of β‐CD the fluorescence quantum yield and lifetime decreased in a regular pattern whereas with gradual increase in concentration of γ‐CD the fluorescence quantum yield and lifetime gradually increased. With addition of urea, the fluorescence quantum yield and lifetime of 7‐DCCA in CDs increased. Binding constant calculation shows that 7‐DDCA forms 1:1 complex with β‐CD and with γ‐CD it forms 1:1 and 1:2 (guest:host) inclusion complex. We proposed that the dye molecule formed capping complex with β‐CD by means of hydrogen bonding and after addition of urea the hydrogen bonding network broke down and part of dye molecule entered inside the cavity of β‐CD. The photophysics of 7‐DCCA was studied in dioxane‐water mixture and ethylene glycol‐acetonitrile mixture to know the effect of polarity and viscosity of the media. The photophysics of 7‐DCCA was also studied in different neat solvents. It was found that the photophysics of 7‐DCCA depended on the structural feature of the solvents and solvent mixtures.  相似文献   

12.
In this paper, we theoretically explore the motivation and behaviors of the excited‐state intramolecular proton transfer (ESIPT) reaction for a novel white organic light‐emitting diode (WOLED) material 4‐tert‐butyl‐2‐(5‐(5‐tert‐butyl‐2‐methoxyphenyl)thiazolo[5,4‐d]thiazol‐2‐yl)‐phenol (t‐MTTH). The “atoms in molecules” (AIM) method is adopted to verify the formation and existence of the hydrogen bond O? H···N. By analyzing the excited‐state hydrogen bonding behaviors via changes in the chemical bonding and infrared (IR) vibrational spectra, we confirm that the intramolecular hydrogen bond O? H···N should be getting strengthened in the first excited state in four kinds of solvents, thus revealing the tendency of ESIPT reaction. Further, the role of charge‐transfer interaction is addressed under the frontier molecular orbitals (MOs), which depicts the nature of the electronic excited state and supports the ESIPT reaction. Also, the electron distribution confirms the ESIPT tendency once again. The scanned and optimized potential energy curves according to variational O? H coordinate in the solvents demonstrate that the proton transfer reaction should occur in the S1 state, and the potential energy barriers along with ESIPT direction support this reaction. Based on the excited‐state behaviors reported in this work, the experimental spectral phenomenon has been reasonably explained.  相似文献   

13.
Enhancing thermal and chemical durability and increasing surface area are two main directions for the construction and improvement of the performance of porous hydrogen‐bonded organic frameworks (HOFs). Herein, a hexaazatriphenylene (HAT) derivative that possesses six carboxyaryl groups serves as a suitable building block for the systematic construction of thermally and chemically durable HOFs with high surface area through shape‐fitted docking between the HAT cores and interpenetrated three‐dimensional network. A HAT derivative with carboxybiphenyl groups forms a stable single‐crystalline porous HOF that displays protic solvent durability, even in concentrated HCl, heat resistance up to 305 °C, and a high Brunauer–Emmett–Teller surface area [SA(BET)] of 1288 m2 g−1. A single crystal of this HOF displays anisotropic fluorescence, which suggests that it would be applicable to polarized emitters based on robust functional porous materials.  相似文献   

14.
A platinum complex with the 6‐(7‐benzothiazol‐2′‐yl‐9,9‐diethyl‐9H‐fluoren‐2‐yl)‐2,2′‐bipyridinyl ligand ( 1 ) was synthesized and the crystal structure was determined. UV/Vis absorption, emission, and transient difference absorption of 1 were systematically investigated. DFT calculations were carried out on 1 to characterize the electronic ground state and aid in the understanding of the nature of low‐lying excited electronic states. Complex 1 exhibits intense structured 1π–π* absorption at λabs<440 nm, and a broad, moderate 1M LCT/1LLCT transition at 440–520 nm in CH2Cl2 solution. A structured 3ππ*/3M LCT emission at about 590 nm was observed at room temperature and at 77 K. Complex 1 exhibits both singlet and triplet excited‐state absorption from 450 nm to 750 nm, which are tentatively attributed to the 1π–π* and 3π–π* excited states of the 6‐(7‐benzothiazol‐2′‐yl‐9,9‐diethyl‐9H‐fluoren‐2‐yl)‐2,2′‐bipyridine ligand, respectively. Z‐scan experiments were conducted by using ns and ps pulses at 532 nm, and ps pulses at a variety of visible and near‐IR wavelengths. The experimental data were fitted by a five‐level model by using the excited‐state parameters obtained from the photophysical study to deduce the effective singlet and triplet excited‐state absorption cross sections in the visible spectral region and the effective two‐photon absorption cross sections in the near‐IR region. Our results demonstrate that 1 possesses large ratios of excited‐state absorption cross sections relative to that of the ground‐state in the visible spectral region; this results in a remarkable degree of reverse saturable absorption from 1 in CH2Cl2 solution illuminated by ns laser pulses at 532 nm. The two‐photon absorption cross sections in the near‐IR region for 1 are among the largest values reported for platinum complexes. Therefore, 1 is an excellent, broadband, nonlinear absorbing material that exhibits strong reverse saturable absorption in the visible spectral region and large two‐photon‐assisted excited‐state absorption in the near‐IR region.  相似文献   

15.
In this work, density functional theory (DFT) and time‐dependent DFT (TDDFT) methods were used to investigate the excited‐state dynamics of the excited‐state hydrogen‐bonding variations and proton transfer mechanism for a novel white‐light fluorophore 2‐(4‐[dimethylamino]phenyl)‐7‐hyroxy‐6‐(3‐phenylpropanoyl)‐4H‐chromen‐4‐one ( 1 ). The methods we adopted could successfully reproduce the experimental electronic spectra, which shows the appropriateness of the theoretical level in this work. Using molecular electrostatic potential (MEP) as well as the reduced density gradient (RDG) versus the product of the sign of the second largest eigenvalue of the electron density Hessian matrix and electron density (sign[λ2]ρ), we demonstrate that an intramolecular hydrogen bond O1–H2···O3 should be formed spontaneously in the S0 state. By analyzing the chemical structures, infrared vibrational spectra, and hydrogen‐bonding energies, we confirm that O1–H2·O3 should be strengthened in the S1 state, which reveals the possibility of an excited‐state intramolecular proton transfer (ESIPT) process. On investigating the excitation process, we find the S0 → S1 transition corresponding to the charge transfer, which provides the driving force for ESIPT. By constructing the potential energy curves, we show that the ESIPT reaction results in a dynamic equilibrium in the S1 state between the forward and backward processes, which facilitates the emission of white light.  相似文献   

16.
Abstract— Studies of purine absorption and emission in seven solvents differing greatly in dielectric constant and hydrogen bonding potential, reveal a variety of solvent effects. For example, the resolution of structure in the absorption spectrum, the position and/or intensity of the X2 absorption band, the intensity of fluorescence, the magnitude of the long wave-lenth tail, and the position of the X1 absorption band are differentially affected—in the order listed—by the solvents tested. Even though it is possible to correlate the extent of decrease in the n-π* tail with increasing solvent dielectric constant, probably alterations in all of these spectroscopic parameters depend most critically upon the ability of the various solvents to form hydrogen bonds with the hydrogen on N9 and/for with the non-bonding electrons on the purine nitrogens: it is tentatively concluded that the probability of hydrogen bonding is directly correlated with the electronegativity of the aza nitrogens (N7 > N3 > N1). In solvents like isopropanol not all of the non-bonding electrons must be solvated maximally in most purine molecules since there is appreciable fluorescence under conditions where a long wavelength tail is readily observed in the absorption spectrum (alternatively some noa-bonding electrons may not te relevant to fluorescence quenching.) Decreases in fluorescence yield are associated with red shifts in the fluorescence maximum, and in the solvents of highest polarity the fluorescence yield is again small indicating that glycerol and water can enhance radiationless tunneling—presumably by altering Franck-Condon configurations and/or improving electronic-vibrational coupling between solute and solvent. The quantum yield is uniform throughout the atsorption band for a given solvent, but studies in aqueous buffers varying from pH 1 to 11 show that the fluorescence yield is greater for charged than for neutral molecules. Further, the fluorescence excitation peak is red shifted in powders. Since phosphorescence is the predominant emission at 777deg;K and increases in fluorescence can be correlated with the presumed solvation of non-bonding electrons, the singlet excited state of lowest energy in ‘unperturbed’ purine must be n-π* in nature. The shape of the phosphorescence band and the decay lifetime of ? 1 sec at 77°K lead to the conclusion that the emitting triplet is a π-π* state. The eight vibrational structures in phosphorescence emission can be readily grouped into two progressions: there is an average separation of about 1300 cm-1 between peaks within a given progression, and the two sets are mutually displaced by about 500 cm-l. Individual vibrational peaks are favoured in different solvents and the whole band may be shifted up to 500 cm-l. Even larger shifts are observed in charged purine molecules and in powders (up to 3000 cm-l) and the presumed 0–0 band is not observed.  相似文献   

17.
We report here the design and synthesis of porphyrin–metallocene dyads consisting of a metallocene [either ferrocene or mixed sandwich η5‐[C5H4(COOH)]Co(η4‐C4Ph4) connected via an ester linkage at meso phenyl position of either free‐base or zinc porphyrin. All these dyad systems were characterized by various spectroscopic and electrochemical methods. A dimeric form of this molecule was observed in the X‐ray crystal structure of Zn‐TTPCo. The absorption spectra of all four dyads indicated the absence of electronic interactions between porphyrin macrocycle and metallocene in the ground state. However, interestingly, in all four dyads, fluorescence emission of the porphyrin was quenched (19–55%) as compared to their monomeric units. The quenching was more pronounced in ferrocene derivatives rather than cobaltocenyl derivatives. The emission quenching can be attributed to the excited‐state intramolecular photoinduced electron transfer from metallocene to singlet excited state of porphyrin and the electron‐transfer rates (kET) were established in the range 1.51 × 108 to 1.11 × 109 s?1. They were found to be solvent dependent.  相似文献   

18.
Enhancing thermal and chemical durability and increasing surface area are two main directions for the construction and improvement of the performance of porous hydrogen‐bonded organic frameworks (HOFs). Herein, a hexaazatriphenylene (HAT) derivative that possesses six carboxyaryl groups serves as a suitable building block for the systematic construction of thermally and chemically durable HOFs with high surface area through shape‐fitted docking between the HAT cores and interpenetrated three‐dimensional network. A HAT derivative with carboxybiphenyl groups forms a stable single‐crystalline porous HOF that displays protic solvent durability, even in concentrated HCl, heat resistance up to 305 °C, and a high Brunauer–Emmett–Teller surface area [SA(BET)] of 1288 m2 g?1. A single crystal of this HOF displays anisotropic fluorescence, which suggests that it would be applicable to polarized emitters based on robust functional porous materials.  相似文献   

19.
The title methanol solvate, C24H22N4O5·CH3OH, forms an extended three‐dimensional hydrogen‐bonded structure, assisted by the presence of several good donor and acceptor sites. It shows none of the crystal packing features typically expected of piperazinediones, such as amide‐to‐amide R22(8) hydrogen bonding. In this structure the methanol solvent appears to play only a space‐filling role; it is not involved in any hydrogen bonding and instead is disordered over several sites. This study reports, to the best of our knowledge, the first crystal structure of an indane‐containing piperazinedione compound which exhibits a three‐dimensional hydrogen‐bonded structure formed by classical (N—H...O and N—H...N) hydrogen‐bonding interactions.  相似文献   

20.
Studies of 2‐(1H‐pyrazol‐5‐yl)pyridine (PPP) and its derivatives 2‐(4‐methyl‐1H‐pyrazol‐5‐yl)pyridine (MPP) and 2‐(3‐bromo‐1H‐pyrazol‐5‐yl)pyridine (BPP) by stationary and time‐resolved UV/Vis spectroscopic methods, and quantum chemical computations show that this class of compounds provides a rare example of molecules that exhibit three types of photoreactions: 1) excited‐state intramolecular proton transfer (ESIPT) in the syn form of MPP, 2) excited‐state intermolecular double‐proton transfer (ESDPT) in the dimers of PPP in nonpolar media, as well as 3) solvent‐assisted double‐proton transfer in hydrogen‐bonded 1:1 complexes of PPP and MPP with alcoholic partners. The excited‐state processes are manifested by the appearance of a dual luminescence and a bimodal irreversible kinetic coupling of the two fluorescence bands. Ground‐state syn–anti equilibria are detected and discussed. The fraction of the higher‐energy anti form varies for different derivatives and is strongly dependent on the solvent polarity and hydrogen‐bond donor or acceptor abilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号