首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
基于密度泛函理论框架下的第一性原理计算方法,系统的研究了碱金属Rb原子修饰具有空位缺陷h-BN单层体系的储氢性能.发现Rb原子可稳定吸附在h-BN单层的B单空位缺陷(VB)上,且Rb原子间无团簇倾向,单个Rb原子最多可稳定吸附5个H2分子,H2分子平均吸附能在0.18-0.21 eV范围内.电子结构分析表明H2分子主要通过极化机制和轨道杂化作用吸附在Rb修饰的缺陷h-BN单层体系上.Rb双侧修饰缺陷h-BN单层体系的理论储氢质量比可以达到5.0 wt%.基于范特霍夫方程和从头算分子动力学(AIMD)模拟对储氢体系的热力学稳定性进行了进一步的研究.  相似文献   

2.
基于第一性原理深入研究了碱金属原子(Li,Na,K)修饰的多孔石墨烯(PG)体系的储氢性能,并且通过从头算分子动力学模拟了温度对Li-PG吸附的H2分子稳定性的影响.研究结果表明,PG结构的碳环中心是碱金属原子最稳定的吸附位置,PG单胞最多可以吸附4个碱金属原子,Li原子被束缚最强,金属原子间无团聚的倾向;H2分子通过极化机制吸附在碱金属修饰的PG结构上,每个金属原子周围最多可以稳定地吸附3个H2分子;Li-PG对H2分子的吸附最强(平均吸附能为-0.246 eV/H2),Na-PG对H2分子的吸附较弱(平均吸附能为-0.129 eV/H2),K-PG对H2分子的吸附最弱(平均吸附能为-0.056 eV/H2),不适合用做储氢材料;在不考虑外界压强且温度为300 K的情况下,Li-PG结构可稳定地吸附9个H2分子,储氢量为9.25 wt.%;在400 K时,有7个吸附H2分子脱离Li-PG的束缚,在600-700 K的范围内,吸附H2分子全部脱离了Li-PG体系的束缚.  相似文献   

3.
利用第一性原理方法研究了一氧化碳分子在本征和硼、氮、铝、磷掺杂的有限尺寸石墨烯上的吸附机理.结果表明,石墨烯作为一氧化碳传感器时的性能依赖于掺杂元素.本征、硼和氮掺杂石墨烯吸附一氧化碳时的吸附能较低,为物理吸附.铝、磷掺杂石墨烯的吸附能显著提高,比本征、硼和氮掺杂时高出约一个数量级,且铝和磷原子从石墨烯中突出,使其发生局部弯曲.铝掺杂石墨烯增强了石墨烯与一氧化碳分子之间的相互作用,可以提高石墨烯的气敏性和吸附能力,是一氧化碳传感器的最佳候选材料之一.  相似文献   

4.
采用密度泛函理论(DFT)的第一性原理方法,对Na在本征双层石墨烯(PBLG)和不同掺杂浓度的N掺杂石墨烯(NBLG)表面的吸附性质进行了研究.确定了不同N掺杂浓度时NBLG的最稳定N分布结构,计算了Na在PBLG和不同掺杂浓度的NBLG表面的吸附能.计算结果表明,N原子掺杂倾向于取代对位或次临近位置的C原子,并与下层C原子相对;随着N掺杂浓度的增加,吸附高度逐渐增加,且与掺杂N原子分布相匹配; Na在PBLG表面吸附使平均层间距增加,而在NBLG表面吸附使之减小; Na与C_(27)N_9表面的结合最稳定.  相似文献   

5.
采用密度泛函理论(DFT)的第一性原理方法,对Na在本征双层石墨烯(PBLG)和不同掺杂浓度的B掺杂石墨烯(BBLG)表面的吸附性质进行了研究.确定了不同B掺杂浓度时BBLG的最稳定B分布结构,计算了Na在PBLG和不同掺杂浓度的BBLG表面的吸附能.计算结果表明,B原子掺杂倾向于占据上层中对位或次临近位置,并与下层中六边形碳环中心相对,B_4C_(32)的形成能最小;B掺杂浓度的增加使BBLG中上层石墨烯片层结构起伏增大,而对下层影响较小;Na在BBLG表面吸附高度和平均层间距受上层结构起伏影响显著;Na倾向于吸附在B_9C_(27)表面B原子的上方,使原始平面结构产生起伏,Na与B_9C_(27)表面的结合最稳定.  相似文献   

6.
本文利用第一性原理研究了 晶体、 晶体和 晶体的电子结构和光学性质。通过对电子结构的分析,发现杂质能级的深浅与掺杂元素原子序数有关。原子序数越大,杂质能级越深。通过对 晶体、 晶体和 晶体的吸收谱进行分析,并与单掺杂 晶体的吸收谱进行比较,发现双掺杂在可见光区域吸收率明显提高,约为单掺杂的3倍。 晶体分别在380nm和590nm处形成吸收峰, 晶体可见光区域吸收率比 以及 晶体高,分别在450nm附近和660nm附近出现吸收峰, 晶体在430nm到600nm之间区域都有较高的吸收率,并在770nm的长波范围有一小的吸收峰。计算结果与双色全息存储(双光子全息存储)所用记录光的波长相符。  相似文献   

7.
本文利用第一性原理研究了Mn:Fe:LiNbO3晶体、Mn:Ru:LiNbO3晶体和Fe:Ru:LiNbO3晶体的电子结构和光学性质.通过对电子结构的分析,发现杂质能级的深浅与掺杂元素原子序数有关.原子序数越大,杂质能级越深.通过对Mn:Fe:LiNbO3晶体、Mn:Ru:LiNbO3晶体和Fe:Ru:LiNbO3晶体...  相似文献   

8.
采用基于密度泛函理论的第一性原理方法,研究了本征石墨烯和B掺杂的空位石墨烯吸附Na原子的电荷密度、吸附能、态密度、储存量以及电极电压.结果表明,两种石墨烯中,Na原子的最佳吸附位置都是H位.B掺杂的空位石墨烯对Na原子的吸附能是-2.08 eV,比本征石墨烯对Na原子的吸附能(-0.71eV)低很多.B掺杂的空位石墨烯中Na原子与B原子发生轨道杂化,本征石墨烯中没有杂化现象.B掺杂的空位石墨烯能够吸附12个Na原子,较本征石墨烯多.因此,B掺杂的空位石墨烯更适合储钠.  相似文献   

9.
采用基于密度泛函理论的第一性原理,对氢化锂中间隙氢离子的形成以及迁移行为进行了研究,结果表明间隙氢离子沿[1 1 1]方向迁移势垒最小,迁移到最近邻间隙和次近邻间隙时由其近邻氢离子主导的可能性更大,室温下间隙氢离子可自发迁移到最近邻间隙和第三近邻间隙.氢离子迁移到次近邻间隙和第四近邻间隙形成Frenkel缺陷的可能性最大,是形成Frenkel缺陷最可能的两个位置.  相似文献   

10.
利用平面波超软赝势方法研究了B/N原子单掺杂和共掺杂对双层石墨烯电子特性的影响.对掺杂双层石墨烯进行结构优化,并计算了能带结构、态密度、分波态密度等.分析表明,层间范德瓦尔斯相互作用对双层石墨烯的电子特性有比较明显的影响;B/N原子单掺杂分别对应p型和n型掺杂,会使掺杂片层的能带平移,使得体系能带结构产生较大分裂;双层掺杂的石墨烯能带结构与掺杂原子的相对位置和距离有关,对电子特性有明显的调控作用.其中特别有意义的是,B/N双层共掺杂在不同位置情况下会得到金属性或禁带宽度约为0.3 eV的半导体能带.  相似文献   

11.
氮原子掺杂石墨烯对基于石墨烯的器件和催化研究具有重要的应用价值.本文采用基于密度泛函理论的计算方法,研究了氮原子修饰的C-Bridge(碳原子吸附在石墨烯碳碳键桥位)、C-Top(碳原子吸附在石墨烯一个碳原子上方)和C7557(碳原子对吸附在石墨烯碳环上方)三种不同点缺陷类型的石墨烯物理性质.讨论不同缺陷石墨烯结构在用氮原子进行修饰前后体系的稳定性、电子结构等;计算得到了缺陷处原子的分波态密度(PDOS)图,分析了原子间的相互作用;模拟出氮原子修饰后缺陷石墨烯恒流模式的STM图像,以便和实验上得出的图像进行对比.计算结果表明,对于所选取的三种不同缺陷,氮原子能够较稳定地吸附在缺陷表面.C-Bridge和C-Top缺陷结构本身具有磁矩,经氮原子修饰后结构磁矩消失.与之相反,C7557缺陷结构本身没有磁矩,经氮原子修饰后缺陷体系带有磁矩.另外,C-Bridge和CTop两种不同缺陷结构石墨烯经过氮原子修饰后,体系几何结构变得完全一样.  相似文献   

12.
Clustering of Ti on carbon nanostructures has proved to be an obstacle in their use as hydrogen storagematerials. Using density functional theory we show that Ti atoms will not cluster at moderate concentrations when doped into nanoporous graphene. Since each Ti atom can bind up to three hydrogen molecules with an average binding energy of 0.54 eV/H2, this material can be ideal for storing hydrogen under ambient thermodynamic conditions. In addition, nanoporous graphene is magnetic with or without Ti doping, but when it is fully saturated with hydrogen, the magnetism disappears. This novel feature suggests that nanoporous graphene cannot only be used for storing hydrogen, but also as a hydrogen sensor.  相似文献   

13.
提出碱金属钠原子修饰笼形Si_6团簇的结构模型,采用密度泛函理论(DFT)研究钠原子修饰笼形Si_6团簇的结构及储氢性能.研究结果表明,氢分子与笼形Si_6团簇表面相互作用很弱,氢分子在其表面容易脱附.采用钠原子修饰笼形Si_6团簇后可有效避免氢分子的脱附,并且钠原子在笼形Si_6团簇的表面不发生团聚,有利于氢分子在其表面吸附和循环利用.研究发现在两个钠原子修饰笼形Si_6团簇的结构中,每个钠原子可以有效吸附六个氢分子.计算得到Na2Si_6团簇结构储氢的质量分数高达10.08 wt%,且氢分子的平均吸附能约为0.837 kcal/mol.可见,实现钠原子修饰笼形Si_6团簇结构在常温常压条件下储氢是有可能的.  相似文献   

14.
采用密度泛函方法对锂原子修饰线型硼原子链团簇Li_2B_n(n=2~8)的结构及其储氢性能进行理论研究.结果显示,Li原子可键合于硼链团簇的两端,氢能以分子形式吸附在Li原子周围,每一个Li原子最多可吸附4个氢分子,氢分子的平均吸附能为2.020~2.832 kcal.mol~(-1).其中Li原子修饰B2小团簇的质量储氢分数最大,为31.24 wt%,表明在常温常压条件下它有可能成为一种潜在的储氢媒介.  相似文献   

15.
采用密度泛函方法对锂原子修饰线型硼原子链团簇Li2Bn(n=2~8)的结构及其储氢性能进行理论研究. 结果显示, Li原子可键合于硼链团簇的两端,氢能以分子形式吸附在Li原子周围, 每一个Li原子最多可吸附4个氢分子, 氢分子的平均吸附能为2.020 ~ 2.832 kcal.mol-1. 其中Li原子修饰B2小团簇的质量储氢分数最大,为31.24 wt%,表明在常温常压条件下它有可能成为一种潜在的储氢媒介.  相似文献   

16.
赵玉娜  高涛  吕金钟  马俊刚 《物理学报》2013,62(14):143101-143101
基于密度泛函理论的第一性原理方法, 系统地研究了Li-N-H储氢过程中各个化合物的晶胞参数、生成焓和化学反应焓. 结果发现优化后的晶格参数与先前的理论和实验研究符合得很好. 通过计算Li3N, LiH, LiNH2和Li2NH在298 K的生成焓分别为-168.7, -81.0, -173.0和-190.8 kJ/mol, 进而计算得到整个储氢反应过程在T=298 K时反应焓为78.5 kJ/mol H2, 这和他人计算得到T=300 K的结果75.67 kJ/mol H2非常接近. 最后, 给出了储氢两步反应过程分别在T=298 K时的反应焓, 这些结果都与实验和他人理论计算得到的数据符合较好. 关键词: 第一性原理 热力学性质 Li-N-H 体系 反应焓  相似文献   

17.
利用杂化密度泛函B3LYP方法, 在6-311+G(d, p)基组水平上对Si6和Li修饰的Si6团簇的几何结构和电子性质及储氢性能进行模拟计算和理论研究. 结果表明, Si6团簇最低能量构型为笼型结构, 纯Si6团簇不能有效吸附氢分子. Li原子的引入显著改善了Si6团簇的储氢能力. 以两个Li原子端位修饰Si6团簇为载体, 其氢分子的平均吸附能为1.692~2.755 kcal/mol, 每个Li原子周围可以有效吸附五个氢分子, 储氢密度可达9.952wt%. 合适的吸附能和较高储氢密度表明Li修饰Si6团簇有望成为理想的储氢材料.  相似文献   

18.
利用杂化密度泛函B3LYP方法,在6-311+G(d,p)基组水平上对Si_6和Li修饰的Si_6团簇的几何结构和电子性质及储氢性能进行模拟计算和理论研究.结果表明,Si_6团簇最低能量构型为笼型结构,纯Si_6团簇不能有效吸附氢分子.Li原子的引入显著改善了Si_6团簇的储氢能力.以两个Li原子端位修饰Si_6团簇为载体,其氢分子的平均吸附能为1.692~2.755 kcal/mol,每个Li原子周围可以有效吸附五个氢分子,储氢密度可达9.952 wt%.合适的吸附能和较高储氢密度表明Li修饰Si_6团簇有望成为理想的储氢材料.  相似文献   

19.
盛喆  戴显英  苗东铭  吴淑静  赵天龙  郝跃 《物理学报》2018,67(10):107103-107103
利用Li原子对硅烯进行表面修饰是提高硅烯氢存储能力的一种有效方法.为了充分挖掘Li修饰硅烯的氢存储性能,本文采用范德瓦耳斯作用修正的第一性原理计算方法,对不同Li吸附组分下硅烯的结构、稳定性和氢存储能力进行了研究.研究结果表明,硅烯体系能够在Li组分从0.11增加到0.50时保持稳定,其最大储氢量随Li组分的增加而增大,氢气平均吸附能则存在减小趋势;当Li组分达到0.50而饱和时,硅烯体系具有最大的储氢量,相应的质量储氢密度为11.46 wt%,平均吸附能为0.34 eV/H2,远高于美国能源部设定的储氢标准,表明提高Li组分甚至使其达到饱和在理论上能有效提高Li修饰硅烯的储氢性能.此外,通过对Mulliken电荷布居、差分电荷密度和态密度的分析,发现Li修饰硅烯的储氢机制与电荷转移诱导的静电相互作用和轨道杂化作用有关.研究结果可为Li修饰硅烯在未来氢存储领域的应用提供理论指导.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号