首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ionophores selectively sensitive to primary amines have been synthesized which display low potentiometric selectivity coefficients for K+, Na+ and NH4+ ions, secondary and tertiary amines as well as quaternary ammonium ions. These ionophores include macrocyclic polyethers with dinaphthyl subunits and azocrown ether with nitrogen donor atoms. The feasibility of these ionophores for preparing primary amine drug selective electrodes was investigated in detail. Practically usable PVC membrane electrodes sensitive to primary amine drugs, such as mexiletine, dopamine, metaraminol and tryptamine, and aliphatic primary amines have been prepared with these ionophores as neutral carriers. Direct potentiometric methods for assaying these drugs have been proposed by using the prepared electrodes. The proposed primary amine drug selective electrodes are remarkably superior to those based on ion-associates. Compared with the electrodes based on common ethers, the interference by K+, Na+ and NH4+ ions is substantially reduced. A digital simulation of the electrochemical process concerning the membrane transport was performed and some interesting conclusions have been drawn.  相似文献   

2.
Ionophores selectively sensitive to primary amines have been synthesized which display low potentiometric selectivity coefficients for K~+, Na~+ and NH_4~+ ions, secondary and tertiary amines as well as quaternary ammonium ions. These ionophores include macrocyclic polyethers with dinaphthyl subunits and azocrown ether with nitrogen donor atoms. The feasibility of these ionophores for preparing primary amine drug selective electrodes was investigated in detail. Practically usable PVC membrane electrodes sensitive to primary amine drugs, such as mexiletine, dopamine, metaraminol and tryptamine, and aliphatic primary amines have been prepared with these ionophores as neutral carriers. Direct potentiometric methods for assaying these drugs have been proposed by using the prepared electrodes. The proposed primary amine drug selective electrodes are remarkably superior to those based on ion-associates. Compared with the electrodes based on common ethers, the interference by K~+, Na~+ and NH_4~+ ions is subst  相似文献   

3.
Ion-selective electrodes for antibiotics from the penicillin series, with membranes based on three different classes of ionophores (anion exchangers, aza compounds, and metal phthalocyanines), were proposed. The electrochemical and performance characteristics of the sensors were studied and compared.  相似文献   

4.
Mercury ion-selective electrodes (ISEs) were prepared with a polymeric membrane based on heterocyclic systems: 2-methylsulfanyl-4-(4-nitro-phenyl)-l-p-tolyl-1H-imidazole (I) and 2,4-diphenyl-l-p-tolyl-1H-imidazole (II) as the ionophores. Several ISEs were conditioned and tested for the selection of common ions. The electrodes based on these ionophores showed a good potentiometric response for Hg2+ ions over a wide concentration range of 5.0 x 10(5-) - 1.0 x 10(-1)M with near-Nernstian slopes. Stable potentiometric signals were obtained within a short time period of 20 s. The detection limits, the working pH range of the electrodes were 1.0 x 10(-5) M and 1.6-4.4 respectively. The electrodes showed better selectivity for Hg2+ ions over many of the alkali, alkaline-earth and heavy metal ions. Also sharp end points were obtained when these sensors were used as indicator electrodes for the potentiometric titration of Hg2+ ions with iodide ions.  相似文献   

5.
镁离子荧光探针   总被引:2,自引:0,他引:2  
张灯青 《化学进展》2009,21(4):715-723
镁离子(Mg2+)在许多生理过程中扮演着重要的角色,因此对镁离子的选择性识别引起了人们极大的关注。本文综述了近年来镁离子荧光探针的最新研究进展。镁离子荧光探针体系主要分为:喹啉类、β-二酮类、冠醚/多醚类、羧酸类、荧光素/罗丹明类、配合物类、聚合物类和纳米材料类等。本文列举了每类探针分子代表性的化合物并总结比较了不同类型的镁离子荧光探针体系。  相似文献   

6.
19-Membered azo- and azoxycrown ethers have been synthesized by reductive macrocyclization of respective bis-(nitrophenoxy)oxaalkanes. The behavior of these compounds as ionophores in ion-selective membrane electrodes has been studied. The structure of the 19-membered dibenzoazocrown ether has been determined.  相似文献   

7.
8.
Selective ionophores of extreme lipophilicity for liquid membrane electrodes Lipophilic ionophores of the type diether diamides have been prepared. Their lipophilicity is up to 7 orders of magnitude higher than the one of the most lipophilic ion carriers used as selective components in liquid membrane electrodes reported so far. For such ion carriers of extremely high lipophilicity kinetic limitations of the carrier induced ion transfer between aqueous and membrane phase usually dominate and heavily disturb the electromotive behavior of the membrane electrode. These limitations are absent only in those cases where most of the lipophilic segments of the carrier may remain in the membrane phase while the segments with the coordination sites are exposed to the aqueous phase during the transfer process.  相似文献   

9.
New compounds — podands and cryptands with two secondary sulfonamide groups —have been synthesized and are described. They were tested as ionophores for guanidinium ions in PVC-membrane electrodes with bis (2-ethylhexyl)sebacate (DOS) as plasticizer.  相似文献   

10.
Novel aluminum(III)- and zirconium(IV)-tetraphenylporhyrin (TPP) derivatives are examined as fluoride-selective ionophores for preparing polymer membrane-based ion-selective electrodes (ISEs). The influence of t-butyl- or dichloro-phenyl ring substituents as well as the nature of the metal ion center (Al(III) versus Zr(IV)) on the anion complexation constants of TPP derivative ionophores are reported. The anion binding stability constants of the ionophores are characterized by the so-called “sandwich membrane” method. All of the metalloporphyrins examined form their strongest anion complexes with fluoride. The influence of plasticizer as well as the type of lipophilic ionic site additive and their amounts in the sensing membrane are discussed. It is shown that membrane electrodes formulated with the metalloporphyrin derivatives and appropriate anionic or cationic additives exhibit enhanced potentiometric response toward fluoride over all other anions tested. Since selectivity toward fluoride is enhanced in the presence of both anionic and cationic additives, the metalloporphyrins can function as either charged or neutral carriers within the organic membrane phase. In contrast to previously reported fluoride-selective polymeric membrane electrodes based on metalloporphyrins, nernstian or near-nernstian (−51.2 to −60.1 mV decade−1) as well as rapid (t < 80 s) and fully reversible potentiometric fluoride responses are observed. Moreover, use of aluminum(III)-t-butyltetraphenylporphyrin as the ionophore provides fluoride sensors with prolonged (7 months) functional lifetime.  相似文献   

11.
New synthetic H+-selective carriers, derivatives of pyrazole, have been used as ionophores in liquid membrane electrodes for pH measurements in the acidic range. Selectivity coefficients toward sodium, potassium and calcium have been determined in this range and they are comparable to or better than those for previously described carriers.  相似文献   

12.
Ten macrocyclic compounds (1–10), each containing two sulfonamide groups have been incorporated into PVC membrane electrodes as ionophores. Their selectivity towards alkali and alkaline earth metal cations has been studied and compared to selectivities found in cation transport experiments.  相似文献   

13.
Dendrimers, alkylthiol-gold nanoparticles and gold-nanoparticle-cored dendrimers containing tethers terminated by a redox group (typically an iron sandwich) attached to a hydrogen-bonding group (amido, amino, silyl) are selective and efficient exo-receptors for the recognition, sensing and titration of oxo-anions, including ATP(2-), or halogens, mostly using cyclic voltammetry. Various positive dendritic effects were disclosed (in contrast to catalysis), and large gold-nanoparticle-cored redox dendrimers of this type that contain several hundred equivalent ferrocenyl groups readily adsorb on Pt electrodes, providing useful regenerable electrochemical sensors.  相似文献   

14.
Adamantylcalix[4]arenes carboxylated at the upper rim have been synthesized by a convenient one-step procedure from p-H-calix[4]arene and carboxylated 1-adamantanols. Selective and exhaustive lower rim alkylation along with upper rim modification by amino acid fragments have been carried out. Preliminary evaluation of the novel N-linked peptidocalixarenes as ionophores for ion-selective electrodes is reported.  相似文献   

15.
Solid-state potentiometric calcium sensors based on newly synthesized Schiff’s base of 3-aminosalycilic acid with benzil [2-hydroxy-3-(2-oxo-1,2-diphenylethylidene)amino) benzoic acid] ionophore I and with isatin [2-hydroxy-3-(2-oxoindolin-3-ylidene amino)benzoic acid] ionophore II ionophores and their covalently attached to polyacrylamide ionophores III and IV, respectively, were developed. The all-solid-state sensors were constructed by the application of a thin film of polymeric membrane cocktail onto gold electrodes that were pre-coated with the conducting polymer poly (3,4-ethylenedioxy-thiophen) as an ion and electron transducer. More than 40 sensors with membranes containing plasticized PVC or poly(butyl methacrylate-co-dodecyl methacrylate as a plasticizer-free membrane matrix were investigated. The constructed sensors contained various amounts of the different ionophores with and without anionic lipophilic additive. The sensor containing 10% of ionophore III and 3% tetra (p-chlorophenyl) borate in acrylate copolymer exhibited a stable potentiometric response over a wide pH range of 4–9. It possessed a linear concentration range of 6 10?10 to 1 10?2 mol L?1 with a Nernstian slope of 28.5 mV/decade and a limit of detection (LOD) of 2 10?10 mol L?1. It exhibited a good selectivity for calcium to other cations. The selectivity coefficients towards different mono-, di- and trivalent cations were determined with the fixed interference method (FIM) and separate solution method (SSM). The sensor’s life time is more than 3 months, without significant deterioration in the slope. The proposed sensors were utilized for the determination of calcium concentration in serum. The results were compared with those obtained from routine clinical laboratory electrolyte analyser. The results reveal that the all-solid-state calcium sensor is promising for the point of care testing.  相似文献   

16.
Ten Ag+-selective ionophores have been characterized in terms of their potentiometric selectivities and complex formation constants in solvent polymeric membranes. The compounds with π-coordination show much weaker interactions than those with thioether or thiocarbamate groups as the coordinating sites. Long-term studies with the best ionophores show that the lower detection limit of the best Ag+ sensors can be maintained in the subnanomolar range for at least 1 month. The best ionophores have also been characterized in fluorescent microspheres. The so far best lower detection limits of 3 × 10−11 M (potentiometrically) and 2 × 10−11 M Ag+ (optically) are found with bridged thiacalixarenes.  相似文献   

17.
Two novel lanthanide metal–organic framework (Ln-MOF) luminescent sensors for the detection of picric acid have been successfully assembled. Following a function-oriented strategy, urea hydrogen-bonding functional sites were introduced into two MOF frameworks. A structural analysis indicated that the two MOFs have the exact same structure, namely 2D layers with diamond-shaped holes that are accumulated into a 3D framework through the hydrogen-bonding interactions between urea and carboxylate groups. Interestingly, only half of the urea units are involved in supporting the MOF framework through N−H⋅⋅⋅O hydrogen-bonding interactions, whereas the other half are located in the pore channel and act as empty recognition sites. Abundant N−H urea bonds are present in the inner walls of three types of interpenetrating 1D channels. Luminescence studies revealed that the two Ln-MOFs exhibit high sensitivity, good selectivity, and a fast luminescence quenching response towards picric acid. In particular, the two Ln-MOFs can be simply and quickly regenerated, and exhibit excellent recyclability. In summary, we have successfully used a function-oriented strategy to achieve multiple functions in a ligand to construct lanthanide MOF luminescent sensors for the detection of picric acid, thereby providing a potential strategy for the future development of MOF luminescent sensors with a specific target.  相似文献   

18.
The electrochemistry of calixarene as a redox-dependent ionophore and its structural dependence are described. One or more redox-centers such as quinone, ferrocene, cobaltocenium and ruthenium bipyridine moieties have been introduced into the calixarene frame of the lower or upper rim. Although the electrochemical behavior depends mainly on the inherent redox property of these electrochemically active groups, the structural effect and solvent also play important roles, especially, in the presence of charged guests. When cationic species such as metal ions and ammonium ion are added to a quinone-functionalized calixarene solution, electron transfer to quinone is enhanced by the electrostatic effect or the formation of hydrogen bonds. In addition to redox-active hosts for voltammetric use, a number of calixarenes with novel structures have been developed as ionophores for potentiometric analysis and found to be successful for some target ions. In terms of Na+, Cs+ and Ca2+ selective ionophores for ion-selective electrodes, calixarenes are found to be excellent compared to crown ether derivatives or cryptands. Calixarenes can be also utilized to construct chemically modified electrodes, which are sensitive to gas species and biologically important compounds. The sophisticated design and synthesis of calixarenes are essential to specific potential applications to diverse fields.  相似文献   

19.
Fabrication of PVC membrane electrodes incorporating selective neutral carriers for Cd(2+) was reported. The ionophores were designed to have different topologies, donor atoms and lipophilicity by attaching tripodal amine (TPA) units to the lipophilic anthracene (ionophore I) and p-tert-butylcalix[4]arene (ionophores II, III and IV). The synthesized ionophores were incorporated to the plasticized PVC membranes to prepare Cd(II) ion selective electrodes (ISEs). The membrane electrodes were optimized by changing types and amounts of ionic sites and plasticizers. The selectivity of the membranes fabricated from the synthesized ionophores was evaluated, the relationship between structures of ionophores and membrane characteristics were explored. The ionophore IV which composed of two opposites TPA units on the calix[4]arene compartment showed the best selectivity toward Cd(2+). The best membrane electrode was fabricated from ionophore IV (10.2 mmol kg(-1)) with KTpClPB (50.1 mol% related to the ionophore) as an ion exchanger incorporated in the DOS plasticized PVC membrane (1:2; PVC:DOS). The Cd-ISE fabricated from ionophore IV exhibited good properties with a Nernstian response of 29.4±0.6 mV decade(-1) of activity for Cd(2+) ions and a working concentration range of 1.6×10(-6)-1.0×10(-2)M. The sensor has a fast response time of 10s and can be used for at least 1 week without any divergence in potential. The electrode can be used in the pH range of 6.0-9.0. The proposed electrodes using ionophores III and IV were employed as a probe for determining Cd(2+) from the oxidation of CdS QDs solution and the real treatment waste water sample with excellent results.  相似文献   

20.
The diffusion coefficients of active components in ion-selective membranes have a decisive influence on the life-time and detection limit of the respective ion-selective electrodes, as well as influencing the rate of polarization and relaxation processes of electrically perturbed ion sensors. Therefore, the rational design of mass transport controlled ion-selective electrodes with sub-nanomolar detection limits requires reliable data on the diffusion coefficients. We have implemented electrochemical methods for the quantitative assessment of both the diffusion coefficients of free ionophores and ion-ionophore complexes. The diffusion coefficients of the pH-sensitive chromoionophore ETH 5294 and the calcium-selective ionophore ETH 5234 were determined in plasticized PVC membranes with different PVC to plasticizer ratios. The diffusion coefficient of the free chromoionophore determined by a chronoamperometric method was validated with optical methods for a variety of membrane compositions. The calcium-selective ionophore ETH 5234 was used as a model compound to assess the diffusion coefficient of the ion-ionophore complex calculated from the time required for the complexes to cross a freshly prepared membrane during potentiometric ion-breakthrough experiments. The difference between the diffusion coefficients of the free ionophore ETH 5234 and the ion-ionophore complex was found to be significant and correlated well with the geometry of the respective species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号