首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Human embryonic stem (hES) cells are capable of differentiating into pluralistic cell types, however, spontaneous differentiation generally gives rise to a limited number of specific differentiated cell types and a large degree of cell heterogeneity. In an effort to increase the efficiency of specified hES cell differentiation, we performed a series of transient transfection of hES cells with EGFP expression vectors driven by different promoter systems, including human cellular polypeptide chain elongation factor 1 alpha (hEF1alpha), human cytomegalo-virus, and chicken beta-actin. All these promoters were found to lead reporter gene expression in undifferentiated hES cells, but very few drug-selectable transfectants were obtained and failed to maintain stable expression of the transgene with either chemical or electroporation methods. In an attempt to increase transfection efficiency and obtain stable transgene expression, differentiated hES cells expressing both mesodermal and ectodermal markers were derived using a defined medium. Differentiated hES cells were electroporated with a hEF1alpha promoter-driven EGFP or human noggin expression vector. Using RT-PCR, immunocytochemistry and fluorescence microscopy, the differentiated hES cells transfected with foreign genes were confirmed to retain stable gene and protein expression during prolonged culture. These results may provide a new tool for introducing exogenous genes readily into hES cells, thereby facilitating more directed differentiation into specific and homogenous cell populations.  相似文献   

2.
3.
Kim MS  Kim J  Han HW  Cho YS  Han YM  Park JK 《Lab on a chip》2007,7(4):513-515
We have developed a novel method for fabricating an embryonic stem cell divider (ESCD) constructed from a poly(dimethylsiloxane) (PDMS) replica with a square or hexagonal pattern, and have proposed a new dissociation method for human embryonic stem cells (ESCs). An aspect ratio of the device as high as 2 was perfectly replicated in the cutting line. Using the ESCD, human ESC colonies can be easily and efficiently dissociated into regular-sized ESC clumps without enzymatic treatment. The regularity of the ESC clumps dissociated by the ESCD was compared to that dissociated by a conventional mechanical method. Its quality and reliability were confirmed by maintaining undifferentiated ESCs up to the 15th passage. The ESCD will contribute to the advance quality control of in vitro ESC cultures and allow large-scale production of qualified ESCs with tremendous time- and work-saving.  相似文献   

4.
We report a reliable strategy to perform automated image cytometry of single (non-adherent) stem cells captured in microfluidic traps. The method rapidly segments images of an entire microfluidic chip based on the detection of horizontal edges of microfluidic channels, from where the position of the trapped cells can be derived and the trapped cells identified with very high precision (>97%). We used this method to successfully quantify the efficiency and spatial distribution of single-cell loading of a microfluidic chip comprised of 2048 single-cell traps. Furthermore, cytometric analysis of trapped primary hematopoietic stem cells (HSC) faithfully recapitulated the distribution of cells in the G1 and S/G2-M phase of the cell cycle that was measured by flow cytometry. This approach should be applicable to automatically track single live cells in a wealth of microfluidic systems.  相似文献   

5.
Grover WH  Mathies RA 《Lab on a chip》2005,5(10):1033-1040
An integrated microfluidic processor is developed that performs molecular computations using single nucleotide polymorphisms (SNPs) as binary bits. A complete population of fluorescein-labeled DNA "answers" is synthesized containing three distinct polymorphic bases; the identity of each base (A or T) is used to encode the value of a binary bit (TRUE or FALSE). Computation and readout occur by hybridization to complementary capture DNA oligonucleotides bound to magnetic beads in the microfluidic device. Beads are loaded into sixteen capture chambers in the processor and suspended in place by an external magnetic field. Integrated microfluidic valves and pumps circulate the input DNA population through the bead suspensions. In this example, a program consisting of a series of capture/rinse/release steps is executed and the DNA molecules remaining at the end of the computation provide the solution to a three-variable, four-clause Boolean satisfiability problem. The improved capture kinetics, transfer efficiency, and single-base specificity enabled by microfluidics make our processor well-suited for performing larger-scale DNA computations.  相似文献   

6.
BackgroundGene expression heterogeneity contributes to development as well as disease progression. Due to technological limitations, most studies to date have focused on differences in mean expression across experimental conditions, rather than differences in gene expression variance. The advent of single cell RNA sequencing has now made it feasible to study gene expression heterogeneity and to characterise genes based on their coefficient of variation.MethodsWe collected single cell gene expression profiles for 32 human and 39 mouse embryonic stem cells and studied correlation between diverse characteristics such as network connectivity and coefficient of variation (CV) across single cells. We further systematically characterised properties unique to High CV genes.ResultsHighly expressed genes tended to have a low CV and were enriched for cell cycle genes. In contrast, High CV genes were co-expressed with other High CV genes, were enriched for bivalent (H3K4me3 and H3K27me3) marked promoters and showed enrichment for response to DNA damage and DNA repair.ConclusionsTaken together, this analysis demonstrates the divergent characteristics of genes based on their CV. High CV genes tend to form co-expression clusters and they explain bivalency at least in part.  相似文献   

7.
Drop-based microfluidic devices for encapsulation of single cells   总被引:3,自引:0,他引:3  
We use microfluidic devices to encapsulate, incubate, and manipulate individual cells in picoliter aqueous drops in a carrier fluid at rates of up to several hundred Hz. We use a modular approach with individual devices for each function, thereby significantly increasing the robustness of our system and making it highly flexible and adaptable to a variety of cell-based assays. The small volumes of the drops enables the concentrations of secreted molecules to rapidly attain detectable levels. We show that single hybridoma cells in 33 pL drops secrete detectable concentrations of antibodies in only 6 h and remain fully viable. These devices hold the promise of developing microfluidic cell cytometers and cell sorters with much greater functionality, allowing assays to be performed on individual cells in their own microenvironment prior to analysis and sorting.  相似文献   

8.
Lee JM  Kim JE  Kang E  Lee SH  Chung BG 《Electrophoresis》2011,32(22):3133-3137
We developed an integrated microfluidic culture device to regulate embryonic stem (ES) cell fate. The integrated microfluidic culture device consists of an air control channel and a fluidic channel with 4×4 micropillar arrays. We hypothesized that the microscale posts within the micropillar arrays would enable the control of uniform cell docking and shear stress profiles. We demonstrated that ES cells cultured for 6 days in the integrated microfluidic culture device differentiated into endothelial cells. Therefore, our integrated microfluidic culture device is a potentially powerful tool for directing ES cell fate.  相似文献   

9.
We developed the dual‐micropillar‐based microfluidic platform to direct embryonic stem (ES) cell fate. 4 × 4 dual‐micropillar‐based microfluidic platform consisted of 16 circular‐shaped outer micropillars and 8 saddle‐shaped inner micropillars in which single ES cells were cultured. We hypothesized that dual‐micropillar arrays would play an important role in controlling the shear stress and cell docking. Circular‐shaped outer micropillars minimized the shear stress, whereas saddle‐shaped inner micropillars allowed for docking of individual ES cells. We observed the effect of saddle‐shaped inner micropillars on cell docking in response to hydrodynamic resistance. We also demonstrated that ES cells cultured for 6 days within the dual‐micropillar‐based microfluidic platform differentiated into neural‐like cells. Therefore, this dual‐micropillar‐based microfluidic platform could be a potentially powerful method for screening of lineage commitments of single ES cells.  相似文献   

10.
A microfluidic approach to generate hydrogel microstructures inside microchannels for controlled encapsulation of single cells was developed. The method was based on a modified microscope projection photolithography which allowed for the photopolymerization of poly(ethylene glycol) diacrylate (PEG-DA) inside microchannels. Uniform-sized hydrogel microstructures (~50 μm in diameter) were generated one by one with determined positions to encapsulate single cells without losing the viability. Cells of interest could be identified by any kinds of visible labels to be selectively encapsulated inside the formed hydrogel microstructures. Large-scale encapsulation of single cells was achieved with a relatively high efficiency of 80% and the viability of encapsulated cells could be guaranteed by removing the dead cells identified with Trypan blue. This method is simple, fast and convenient to pattern the microchannels with single cells for a wide range of cell-based applications. For demonstration, two intracellular enzyme assays of carboxylesterase were performed to investigate the distribution of enzyme concentrations and the kinetic information within the encapsulated single HepG2 cells.  相似文献   

11.
Human embryonic stem cells (hESCs) are self-renewing pluripotent cells with relevance to treatment of numerous medical conditions. However, a global understanding of the role of the hESC proteome in maintaining pluripotency or triggering differentiation is still largely lacking. The emergence of top-down proteomics has facilitated the identification and characterization of intact protein forms that are not readily apparent in bottom-up studies. Combined with metabolic labeling techniques such as stable isotope labeling by amino acids in cell culture (SILAC), quantitative comparison of intact protein expression under differing experimental conditions is possible. Herein, quantitative top-down proteomics of hESCs is demonstrated using the SILAC method and nano-flow reverse phase chromatography directly coupled to a linear-ion-trap Fourier transform ion cyclotron resonance mass spectrometer (nLC-LTQ-FT-ICR-MS). In this study, which to the best of our knowledge represents the first top-down analysis of hESCs, we have confidently identified 11 proteins by accurate intact mass, MS/MS, and amino acid counting facilitated by SILAC labeling. Although quantification is challenging due to the incorporation of multiple labeled amino acids (i.e., lysine and arginine) and arginine to proline conversion, we are able to quantitatively account for these phenomena using a mathematical model.  相似文献   

12.
13.
14.
15.
We describe a programmable microfluidic system with onboard pumps and valves that has the ability to process reaction volumes in the sub-microlitre to hundred microlitre range. The flexibility of the architecture is demonstrated with a commercial molecular biology protocol for mRNA amplification, implemented without significant modification. The performance of the microchip system is compared to conventional bench processing at each stage of the multistep protocol, and DNA microarrays are used to assess the quality and performance of bench- and microchip-amplified RNA. The results show that the microchip system reactions are similar to bench control reactions at each step, and that the microchip- and bench-derived amplified RNAs are virtually indistinguishable in differential microarray analyses.  相似文献   

16.
There is great interest in genetic modification of bone marrow-derived mesenchymal stem cells (MSC), not only for research purposes but also for use in (autologous) patient-derived-patient-used transplantations. A major drawback of bulk methods for genetic modifications of (stem) cells, like bulk-electroporation, is its limited yield of DNA transfection (typically then 10%). This is even more limited when cells are present at very low numbers, as is the case for stem cells. Here we present an alternative technology to transfect cells with high efficiency (>75%), based on single cell electroporation in a microfluidic device. In a first experiment we show that we can successfully transport propidium iodide (PI) into single mouse myoblastic C2C12 cells. Subsequently, we show the use of this microfluidic device to perform successful electroporation of single mouse myoblastic C2C12 cells and single human MSC with vector DNA encoding a green fluorescent-erk1 fusion protein (EGFP-ERK1 (MAPK3)). Finally, we performed electroporation in combination with live imaging of protein expression and dynamics in response to extracellular stimuli, by fibroblast growth factor (FGF-2). We observed nuclear translocation of EGFP-ERK1 in both cell types within 15 min after FGF-2 stimulation. Due to the successful and promising results, we predict that microfluidic devices can be used for highly efficient small-scale 'genetic modification' of cells, and biological experimentation, offering possibilities to study cellular processes at the single cell level. Future applications might be small-scale production of cells for therapeutic application under controlled conditions.  相似文献   

17.
18.
Characterizing chemical changes within individual cells is important for determining fundamental mechanisms of biological processes that will lead to new biological insights and improved disease understanding. Analyzing biological systems with imaging and profiling mass spectrometry (MS) has gained popularity in recent years as a method for creating chemical maps of biological samples. To obtain mass spectra that provide relevant molecular information about individual cells, samples must be prepared so that salts and other cell culture components are removed from the cell surface and that the cell contents are rendered accessible to the desorption beam. We have designed a cellular preparation protocol for imaging/profiling MS that removes the majority of the interfering species derived from the cellular growth medium, preserves the basic morphology of the cells, and allows chemical profiling of the diffusible elements of the cytosol. Using this method, we are able to reproducibly analyze cells from three diverse cell types: MCF7 human breast cancer cells, Madin-Darby canine kidney (MDCK) cells, and NIH/3T3 mouse fibroblasts. This preparation technique makes possible routine imaging/profiling MS analysis of individual cultured cells, allowing for understanding of molecular processes within individual cells.  相似文献   

19.
The heterogeneity found in many cell types has greatly inspired research in single-cell gene and protein profiling for discovering the origin of heterogeneity and its role in cell fate decisions. Among the existing techniques to probe heterogeneity, atomic force microscopy (AFM) utilizes an antibody/ligand-modified tip to explore the distribution of a target membrane protein on individual cells in their native environment. In this paper, we establish a practical model to analyze the data systematically, and attempt the quantification of membrane protein abundance on single cells by taking account issues, such as the level of nonspecific interaction, the probe resolution, and the reproducibility of detecting protein distribution. We demonstrated the application in examining the heterogeneous distribution and the local protein abundance of TRA-1-81 antigen on human embryonic stem (hES) cells at the subcellular level. Heterogeneity in TRA-1-81 expression was also detected at the single cell level, suggesting the presence of subpopulation cells within an undifferentiated hES cell colony. The method provides a platform to unveiling the correlation between heterogeneity of membrane proteins and cell development in a complex cell community.  相似文献   

20.
Recently, reactive oxygen species (ROS) have been studied as a regulator of differentiation into specific cell types in embryonic stem cells (ESCs). However, ROS role in human ESCs (hESCs) is unknown because mouse ESCs have been used mainly for most studies. Herein we suggest that ROS generation may play a critical role in differentiation of hESCs; ROS enhances differentiation of hESCs into bi-potent mesendodermal cell lineage via ROS-involved signaling pathways. In ROS-inducing conditions, expression of pluripotency markers (Oct4, Tra 1-60, Nanog, and Sox2) of hESCs was decreased, while expression of mesodermal and endodermal markers was increased. Moreover, these differentiation events of hESCs in ROS-inducing conditions were decreased by free radical scavenger treatment. hESC-derived embryoid bodies (EBs) also showed similar differentiation patterns by ROS induction. In ROS-related signaling pathway, some of the MAPKs family members in hESCs were also affected by ROS induction. p38 MAPK and AKT (protein kinases B, PKB) were inactivated significantly by buthionine sulfoximine (BSO) treatment. JNK and ERK phosphorylation levels were increased at early time of BSO treatment but not at late time point. Moreover, MAPKs family-specific inhibitors could prevent the mesendodermal differentiation of hESCs by ROS induction. Our results demonstrate that stemness and differentiation of hESCs can be regulated by environmental factors such as ROS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号