首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
增感染料在卤化银微晶上吸附并形成J-聚集体是染料光谱增感和超增感的关键步骤.本文利用紫外-可见吸收光谱研究了增感染料和阻光染料在氯化银微晶上的吸附,并考察了阻光染料对增感染料J-聚集体的形成及乳剂感光性能的影响.结果表明:不同阻光染料在氯化银微晶表面的吸附程度不同,对增感染料J-聚集体形成的影响也有差异.其中,吸附较小的不影响增感染料J-聚集体的形成,而吸附较大的阻碍增感染料J-聚集形成,特别是阻光染料在增感染料之前加入乳剂中时.在氯化银微晶上吸附很小的阻光染料基本不影响增感染料对乳剂的光谱增感,而吸附较强的阻光染料不仅吸收入射光,还抑制或破坏增感染料的光谱增感.因此,在氯化银微晶表面没有吸附的阻光染料才是优良的阻光染料.  相似文献   

2.
The squaraine dye bis(2,4,6-trihydroxyphenyl)squaraine (SqH) was earlier reported to form J-type dimer aggregates in acetonitrile solutions at higher concentrations. Subsequent studies have suggested that concentration-dependent changes in the absorption spectrum of SqH in acetonitrile could be attributed to shifts in the acid-base equilibrium due to the presence of water as an impurity. In this work, we describe our studies on the effect of varying acid and dye concentration on the absorption spectra of the bromo and iodo substituted dyes, bis(3,5-dibromo-2,4,6-trihydroxyphenyl)squaraine (SqBr) and bis(3,5-diiodo-2,4,6-trihydroxyphenyl)squaraine (SqI). Analysis of the changes in the absorption spectra as a function of dye concentration and the nature of the solvent composition confirmed the formation of J-type dimer aggregates in aprotic solvents in this class of dyes. Further confirmation for the formation of the J-type dimer aggregates could be obtained by comparing the differences in the triplet excited state properties of the neutral and aggregated forms of the dyes using time-resolved spectroscopy.  相似文献   

3.
Photophysical properties of coumarin-481 (C481) dye in aqueous solution show intriguing presence of multiple emitting species. Concentration and wavelength dependent fluorescence decays and time-resolved emission spectra and area-normalized emission spectra suggest the coexistence of dye monomers, dimers, and higher aggregates (mostly trimers) in the solution. Because of the efficient intramolecular charge transfer (ICT) state to twisted intramolecular charge transfer (TICT) state conversion, the dye monomers show very short fluorescence lifetime of ~0.2 ns. Fluorescence lifetimes of dimers (~4.1 ns) and higher aggregates (~1.4 ns) are relatively longer due to steric constrain toward ICT to TICT conversion. Observed results indicate that the emission spectra of the aggregates are substantially blue-shifted compared to monomers, suggesting H-aggregation of the dye in the solution. Temperature-dependent fluorescence decays in water and time-resolved fluorescence results in water-acetonitrile solvent mixtures are also in support of the dye aggregation in the solution. Though dynamic light scattering studies could not recognize the dye aggregates in the solution due to their small size and low concentration, fluorescence up-conversion measurements show a relatively higher decay tail in water than in water-acetonitrile solvent mixture, in agreement with higher dye aggregation in aqueous solution. Time-resolved fluorescence results with structurally related non-TICT dyes, especially those of coumarin-153 dye, are also in accordance with the aggregation behavior of these dyes in aqueous solution. To the best of our knowledge, this is the first report on the aggregation of coumarin dyes in aqueous solution. Present results are important because coumarin dyes are widely used as fluorescent probes in various microheterogeneous systems where water is always a solvent component, and the dye aggregation in these systems, if overlooked, can easily lead to a misinterpretation of the observed results.  相似文献   

4.
Abstract— Photophysical properties of coumarin dyes solubilized in aqueous detergent solutions have been investigated including measurement of absorption and fluorescence emission maxima, and fluorescence quantum yields. Use of coumarin 4 as a fluorescence probe of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) solutions led to the conclusion that the sites for dye incorporation in micelles are significantly hydrogen-bonded (hydrated). The inhibition of photochemical decomposition for detergent-solubilizcd dyes has also been observed. Electron transfer from micelle-bound dye to a water soluble acceptor, methyl viologen, has been investigated by flash photolysis.  相似文献   

5.
Films of the layered silicates fluorohectorite (FH) and saponite (Sap) with various rhodamine dyes were prepared. The dyes with acidic as well as large hydrophobic groups in their molecule were not adsorbed on the surface of FH, which was interpreted in terms of high charge density on the surface of this silicate. All adsorbed dyes formed similar forms, such as isolated cations and H-type molecular aggregates, which were characterized by different spectral properties. Polarized ultraviolet-visible (UV-vis) spectroscopy was used for the characterization of the molecular orientation of dye chromophores on the silicate surface. The isolated dye cations and species, which absorbed light at the low energy part of the spectra, were only slightly tilted with respect to the plane of the silicate surface. The cations forming H-aggregates and absorbing light at low wavelengths were oriented in a nearly perpendicular fashion. The nearly perpendicular orientation was observed as a strong increase of dichroic ratio with film tilting. The orientation of the cations in H-aggregates depends partially on the structure of the dye molecule, namely, on the type of amino group (primary, secondary, or tertiary) in the dye molecule. The type of amino groups probably plays a role in the suitable orientation of dye cations for effective electrostatic interaction between the cations and the negatively charged siloxane surface. X-ray powder diffraction could not distinguish dye phases of dye monomers and molecular aggregates.  相似文献   

6.
The UV–vis absorption properties of azo dyes are known to exhibit a variation with the polarity and acidity of the dye environment. The spectral properties of a series of anionic azo dyes were characterized to further probe the interaction of these dyes with two types of surfactant aggregates: (1) the spherical micelles formed in aqueous solution by alkyltrimethylammonium bromide (CnTAB) surfactants with n = 10–16 and (2) the unilamellar vesicles spontaneously formed in water from binary mixtures of the oppositely-charged double-tailed surfactants cationic didodecyldimethylammonium bromide (DDAB) and anionic sodium dioctylsulfosuccinate (Aerosol OT or AOT). The observed dye spectra reflect the solvatochromic behavior of the dyes and suggest the location and orientation of the dye within the surfactant aggregates. Deconvolution of the overall spectra into sums of Gaussian curves more readily displays any contributions of tautomeric forms of the azo dyes resulting from intramolecular hydrogen bonding. The rich variation in UV/vis absorption properties of these anionic azo dyes supports their use as sensitive tools to explore the nanostructures of surfactant aggregates.  相似文献   

7.
The absorption of dyes within hydrogen-bonded and electrostatically assembled multilayers and subsequent release of the dyes from the films were studied in situ using FTIR-ATR. Multilayers were composed of poly(methacrylic acid), PMAA, and poly(ethylene oxide), PEO (hydrogen-bonded multilayers), or of PMAA and 22% quarternized copolymer of N-ethyl-4-vinylpyridium bromide and 4-vinylpyridine, Q22 (electrostatically stabilized multilayers). After multilayer deposition, the solution pH was changed to produce excess charge within the films. Dyes with charge opposite to the excess charge of the film (Rhodamine 6G for hydrogen-bonded films or Bromophenol Blue for electrostatically assembled multilayers) were then allowed to absorb within multilayers. In both systems, the dyes were uniformly included within the films. The top layers largely affected the loading capacity of the multilayers, suggesting weaker binding of the dyes with the top layers. Dye release into a 0.01 M phosphate buffer was significantly smaller as compared to release in the presence of 0.05-0.5 mg/mL solutions of adsorbing polymers whose charge was the same as the excess charge within the films. We found that with the PMAA/PEO films, dye release did not depend on the concentration of polymer in solution, but was largely controlled by the amount of charge accumulated within the adsorbing polymer layer on the top of the film. For electrostatically stabilized PMAA/Q22 systems, dye release increased with increasing concentration of Q22 in solution, suggesting a significant contribution of the competition of solution species in the release mechanism. Our findings contribute to the understanding of interactions of small molecules with polymer multilayers and might have ramifications for novel applications of multilayer films as new materials for the controlled delivery of chemicals.  相似文献   

8.
A surface tension technique was used to determine the critical aggregation concentration (cac) of a yellow and a red dye in relation to the presence of the anionic surfactant sodium dodecylbenzene sulfonate (DBS) and to temperature changes in buffered aqueous solutions. The cac values of the yellow dye increase from 25 to 45 degrees C (from 41.37 to 50.32 mg L-1) and decrease from 45 to 55 degrees C (from 50.32 to 38.72 mg L-1). The cac values for the red dye/DBS aggregates decrease (from 124.52 to 88.50 mg L-1) from 25 to 55 degrees C. Adsorption of the two dyes onto a mesoporous aminopropyl silica (Sil-NH2) was also studied. The adsorption of the yellow dye increases with an increase in temperature from 25 to 55 degrees C. In the presence of DBS the adsorption on Sil-NH2 for the yellow dye decreases, and for the red dye increases from 25 to 55 degrees C. Adsorptions occurred below and above the cac of the anionic dyes/DBS aggregates. Adsorption of the dyes onto Sil-NH2 fitted well to the Langmuir, Freundlich, and Redlich-Peterson adsorption models. However, in the presence of DBS, only the Freundlich model fit the experimental adsorption data at low dye concentrations (less than 400 mg L-1). In this case, the Redlich-Peterson model was only fitted to the red dye adsorption data. The magnitude of the Dubinin-Radushkevich energetic parameters (E, from 7.00 to 15.00 kJ mol-1) indicates that the adsorption of the dyes onto Sil-NH2, in the absence and in the presence of DBS, is controlled by water adsorbed/dye in solution ion-exchange interactions. It is observed that the values of DeltaadsH are positive for both dyes and the values are quite similar to each other. The exception is the adsorption of the yellow dye in the presence of DBS, which is slightly exothermic. The DeltaadsG values are all negative. However, the interactions of the dyes with Sil-NH2 silica are more spontaneous in the presence of the surfactant. The positive adsorption entropy values (DeltaadsS) for the interaction of the dyes suggest that entropy is a driving force of the dye adsorptions. However, the entropic contribution is higher for the adsorptions in the presence of DBS. It was suggested that the chemical structures of the dyes play an important role in the formation of the dye/DBS aggregates and in dye adsorption onto the aminopropyl silica.  相似文献   

9.
Langmuir-Blodgett (LB) films are constructed by successively transferring monomolecular layers formed at the air-water interface onto solid substrates. One of the advantages of the LB technique in fabricating molecular aggregates lies in the fact that it can employ various kinds of molecules by mixing them at the air-water interface. The mixed system may exhibit new properties that are not observed for individual components. This method would be useful, for example, in the studies of the formation and control of the J-aggregates of functional dyes that attract attention both in science and technology. In this paper, I review this subject mainly based on our recent results in merocyanines. LB films of merocyanine dyes, mixed with arachidic acid (C(20)), exhibit J-aggregate formation and have been serving as typical systems in revealing the physical and structural aspects of nanosized molecular aggregates constructed as monolayers. In the case of LB films of a merocyanine dye having benzothiazole as donor nucleus (abbreviated as DS), electron spin resonance (ESR) spectroscopy has been successful in determining the characteristic in-plane orientation of dye molecules with respect to the dipping direction, which led to the discovery of the flow orientation effect during the dipping process of LB films as the origin of optical dichroism often observed in LB films. In this article, after an introduction of ESR spectroscopy, three major topics on the merocyanine J-aggregation and its characterization in mixed films are discussed. The first topic is the observation and control of the size of J-aggregates in the dilution limit of dyes in arachidic acid matrix for a methyl-substituted DS (6-Me-DS). Dependence of atomic force microscopy (AFM) patterns on the molar ratio allows the identification of dye domains. J-band optical peak analysis based on the Kuhn's extended dipole model, supplemented by a novel application of femtosecond pump-probe optical spectroscopy, yields the size of the J-aggregates of 10(3). The second topic is the control of the J-band peak wavelengths by mixing two different kinds of dye molecules. The first case is the mixture of a J-forming 6-Me-DS and non-J-forming merocyanine analog, DO with benzo-oxazole instead of benzothiazole of DS. The second case is the mixture of both J-forming dyes but with different J-band peak positions, 6-Me-DS and another analog of 5-Cl-DS. The optical peak shifts depending on the molar mixing ratio will be presented. The last topic is related to the elucidation of electronic states of dye molecules in the J-aggregates. Light-induced ESR (LESR) of DS films with stable isotope ((15)N or (13)C)-substituted dyes provide clear evidence for the photoinduced charge transfer by the detection of hyperfine structures. Moreover, infrared (IR) spectroscopy of (13)C-enriched dye identifies the IR absorption peak of the relevant carbon in the chromophore. The results give evidence for the enhanced intramolecular charge transfer of dyes in the J-aggregates compared with an isolated merocyanine composed of donor and acceptor moiety. Lastly, the Cl attachment in 5-Cl-DS leads to a significant enhancement of the nitrogen hyperfine coupling in the LESR spectra. These examples and others demonstrate the potential of LB films of merocyanines in the studies of the nanosized molecular aggregates in monolayer assemblies.  相似文献   

10.
Solvation characteristics of ketocyanine dyes (I-VI) have been investigated in pure solvents and heterogeneous media by absorption and fluorescence studies. The dyes are good reporters of solvent polarity. In protic solvents they exist as equilibrium mixtures of bare and hydrogen-bonded form in the ground state (S0), the latter being the emitting species. In aprotic solvents of low polarity association of the S1 state of the dye takes place. In aqueous micellar media the dye resides at the micelle water interface. The binding constant for dye-micelle interaction has been determined. Fluorescence data in beta-cyclodextrine solution resemble that for that neutral micellar solution indicating that the interaction between the -OH group of the heterogeneous part (micelle/cyclodextrine cavity) and the carbonyl oxygen of the dye is important in both the cases.  相似文献   

11.
本文应用三种不同晶形的溴碘化银乳剂(立方体、八面体和T-颗粒)和八种硫碳菁染料(大部分为内铵盐结构染料)进行了染料的聚集态的研究。试验结果表明,染料的J-聚集态的形成主要取决于染料的结构,其次依赖于卤化银的晶形。三种不同结构的表面活性剂对染料聚集态的形成均有影响,其中两性的表面活性剂最强,阴离子的表面活性剂次之,中性的表面活性剂最弱。二种中位甲基取代的硫碳菁染料的聚集态受表面活性剂影响最为明显,形成较强的J-态,而对其它六种染料的聚集态影响较小,J-聚集态稍有增强。  相似文献   

12.
Steric selectivity in terms of molecular planarity of cationic dyes was investigated using anionic bilayer aggregates. Planar cationic dye (para-type stilbazolium) could be incorporated into the hydrophobic region of anionic crystalline bilayer aggregates, whereas structurally related, less planar dyes (ortho-type stilbazolium) could not be incorporated in spite of somewhat higher hydrophobicity resulting from lengthening of the N-alkyl group.  相似文献   

13.
Absorption, fluorescence emission and excitation spectra of benzothiazole cyanine dyes--thiazole orange (TO) and 7-methyl-6-(3-methyl-2,3-dihydro-1,3-benzothiazol-2-ylidenmethyl) [1,3] dioxolo [4',5':4,5] benzo [d] [1,3] thiazolium methylmethosulfate (Cyan 13)--were investigated over a wide concentration range. The dyes form aggregates with a 'sandwich'-like structure in water solution. At low dye to DNA concentrations ratios, Cyan 13 and TO monomers appear to interact with the DNA. On increasing the dye to DNA concentrations ratio, free dye molecules aggregate with the DNA-bound ones. The spectra of the free dye aggregates and the aggregates formed on the DNA, are characterized by an anomalously large (more than 100 nm) Stokes shift. This suggests, that the pi-electron systems of the aggregates undergo substantial changes in excited state, compared to those of the monomers. The formation of aggregates consisting of the free and DNA-bound dye molecules can be explained using the half-intercalation model of the interaction of the cyanine dye monomers with the DNA.  相似文献   

14.
The UV absorption spectra of rhodamine B and G molecules isolated from industrial dye samples were obtained. Two procedures were used. In one of them, rhodamine B molecules were displaced with water into a heptane layer from a solution of the dye in an alcohol-heptane mixture. The second procedure involved heating of the dye introduced into cellulose triacetate films. Individual rhodamine molecules (namely, dye cation-chlorine anion ion pairs) prepared by both methods did not absorb visible light. The spectra of individual rhodamine molecules coincided with the spectra of so-called pseudoleucobases of xanthene dyes reported in the literature. The conclusion was drawn that the chromaticity property in the series of xanthene dyes appeared because of the formation of supramolecular dimeric and larger aggregates, as was earlier established for triphenylmethane dyes (TPMDs) and copper phthalocyanine (CuPc). At the same time, individual xanthene dye molecules, like TPMD and CuPc molecules, are not chromogens.  相似文献   

15.
The formation of dye dimers and higher aggregates in solution as a function of dye structure and environmental variables are considered. These factors, together with silver halide composition and crystal habit, are also examined in regard to their influence on surface spectra, dye orientation and forces involved in adsorption of dyes at silver halide substrates.  相似文献   

16.
The effects of chenodeoxycholic acid (CDCA) in a dye solution as a co-adsorbent on the photovoltaic performance of dye-sensitized solar cells (DSSCs) based on two organic dyes containing phenothiazine and triarylamine segments (P1 and P2) were investigated.It was found that the coadsorption of CDCA can hinder the formation of dye aggregates and improve electron injection yield and thus Jsc.This has also led to a rise in photovoltage,which is attributed to the decrease of charge recombination.The DSSC based ...  相似文献   

17.
We have explored the photochemical behavior of cationic triarylmethane dye monomers and dimers free in solution and noncovalently bound to bovine serum albumin (BSA) and examined how self-association and the formation of host-guest complexes involving biopolymers and photosensitizers affect the competition between the photosensitization type I and type II mechanisms. Our results have clearly indicated that tri-para-substituted triarylmethane dyes bind efficiently to albumin as monomers and dimers and, interestingly, that the formation of dye aggregates in aqueous solutions is actually assisted by the protein. Protein-assisted dye aggregation takes place under conditions of high biopolymer loading (high [dye]/[protein] ratios), as attested by the appearance of a hypsochromically shifted absorption band (H-band) that overlaps with the spectral shoulder of the respective dye monomer. As predicted by the molecular exciton theory, the intersystem crossing efficiency in H-type dimers is expected to be higher than in the respective dye monomers, and photoinduced electron transfer events are intrinsically favored in dye aggregates as a result of the physical contact between donor and acceptor. We have found that when triarylmethanes are noncovalently bound to BSA their photoreactivity undergoes a remarkable enhancement, and that the photooxidation mechanism type I is particularly favored in the macromolecular environment. A comparative examination of the behavior of triarylmethane dyes with that of methylene blue have shown that in the case of methylene blue the binding phenomenon also favor the type I mechanism.  相似文献   

18.
H-aggregates of dimeric cyanine dyes (TC-P4) formed in PBS could be disassembled by G-quadruplex into dimer and/or monomer, resulting in higher fluorescent selectivity than its corresponding monomer (TC).  相似文献   

19.
The effect of solvents, halo substituents and surfactants on the aggregation of xanthene dyes (fluorescein and eosin Y) has been investigated. It has been found that polar protic solvents promote the aggregation of both the dyes while polar aprotic solvents hinder the aggregation process. Apolar solvents can disintegrate the aggregates previously formed in aqueous medium. The nature of the driving forces for aggregation in the two dyes is different. Surfactants bearing charge opposite to the dye molecules facilitate aggregation. These observations bear direct relevance to the possible use of fluorescein and eosin Y as quantum yield standards, photosensitizers, laser dyes and biological labels.  相似文献   

20.
J-aggregates are highly desired dye aggregates but so far there has been no general concept how to accomplish the required slip-stacked packing arrangement for dipolar merocyanine (MC) dyes whose aggregation commonly affords one-dimensional aggregates composed of antiparallel, co-facially stacked MCs with H-type coupling. Herein we describe a strategy for MC J-aggregates based on our results for an amphiphilic MC dye bearing alkyl and oligo(ethylene glycol) side chains. In an aqueous solvent mixture, we observe the formation of two supramolecular polymorphs for this MC dye, a metastable off-pathway nanoparticle showing H-type coupling and a thermodynamically favored nanosheet showing J-type coupling. Detailed studies concerning the self-assembly mechanism by UV-Vis spectroscopy and the packing structure by atomic force microscopy and wide-angle X-ray scattering show how the packing arrangement of such amphiphilic MC dyes can afford slip-stacked two-dimensional nanosheets whose macrodipole is compensated by the formation of a bilayer structure. As an additional feature we demonstrate how the size of the nanosheets can be controlled by seeded living supramolecular polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号