首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the photoluminescence (PL), scintillation and thermally-stimulated luminescence (TSL) dosimeter properties of MgO ceramic doped with C ions (0.001, 0.01 and 0.1%). The samples were synthesized by a Spark Plasma Sintering (SPS) technique. The PL emission peaks appeared around 400 and 750 nm in all the samples. The PL decay time constants at 400 nm were ∼10 and ∼100 ns which were on the typical order of F+ center in the undoped MgO. The scintillation emission peaks were detected at 330, 400 and 750 nm under X-ray irradiation. The TSL glow curves showed the ∼250 °C peak in 0.1% C-doped sample. The TSL response was confirmed to be linear to the irradiation dose over the dose range from 0.1 to 1000 mGy. As a result, the sensitivity of MgO was improved by C-doping.  相似文献   

2.
The luminescence excitation spectra, emission spectra under photo- and X-ray excitation, luminescence decay kinetics and thermostimulated luminescence (TSL) of Gd3Ga5O12 garnet (GGG) polycrystalline samples have been investigated. It was established that the spectrum of Cr3+ ion emission were present in all TSL peaks. The activation energies of traps that are responsible for appearance of TSL in the region 295-600 K were estimated. It is shown that delocalization of electrons from the Cr3+e traps leads to the appearance of thermoluminescence (TL) glow peak at 390 K. The nature of other TSL peaks is discussed. The influence of visible light on the TSL intensity of the preliminary X-ray-irradiated samples is shown.  相似文献   

3.
The determination of trapping parameters such as order of kinetics, activation energy and frequency factor is one of the most important studies in the field of thermally stimulated luminescence (TSL). A polycrystalline sample of Mn-doped Li2B4O7 was prepared by melting method. The formation of the doped compound was checked by Fourier transform infrared study. The TSL study of the Mn-doped lithium tetraborate sample shows two glow peaks at 190 °C and 310 °C, of which the intensity of the 310 °C glow peak is the maximum. In this paper, the trapping parameters associated with the prominent glow peak of Mn-doped lithium tetraborate were reported using the isothermal luminescence decay and glow curve shape (Chen's) methods. Our results show a very good agreement between the trapping parameters calculated by the two methods.  相似文献   

4.
We reported on the recombination processes determined by the release of electrons from defects connected with the dosimetric 430 K thermostimulated luminescence (TSL) peak as well as with the 260 K TSL peak. These TSL peaks appear in thermochemically reduced α-Al2O3 crystals containing hydrogen and emission of these TSL peaks corresponds to luminescence of the F-center. The X-ray exposure or UV excitation in the absorption band of F-centers at 6.0 eV of reduced α-Al2O3 crystals doped with acceptor impurities results in the appearance of a broad anisotropic complex absorption band in the spectral region 2.5–3.5 eV and in the appearance of a predominant TSL peak at 430 K. Above 430 K the above-mentioned broad absorption band disappears. Optical bleaching of the 2.5–3.5 eV band is accompanied by the disappearance of the 430 K TSL peak and results in F-center emission. The X-ray or UV excitation of reduced α-Al2O3 crystals with donor-type impurities results in the appearance of an anisotropic absorption band at 4.2 eV and the appearance of a dominant TSL peak at 260 K. Above 260 K the 4.2 eV absorption disappears and photostimulated luminescence (PSL) of the F-center recombination luminescence in the 4.2 eV region is no longer observed. Optical bleaching of the 4.2 eV absorption band is accompanied by the disappearance of the 260 K TSL peak. The successful use of reduced α-Al2O3 in dosimetry needs the optimization of the concentration of all components (acceptors, hydrogen, intrinsic defects) involved in the thermo- and photostimulated processes.  相似文献   

5.
ZnAl2O4:Tb phosphor was prepared by combustion synthesis. ZnAl2O4:Tb exhibits three thermally stimulated luminescence (TSL) peaks around 150, 275 and 350 °C. ZnAl2O4:Tb exhibits optically stimulated luminescence (OSL) when stimulated with 470 nm light.Electron spin resonance (ESR) studies were carried out to identify defect centres responsible for TSL peaks observed in ZnAl2O4:Tb. Two defect centres are identified in irradiated ZnAl2O4:Tb phosphor and these centres are assigned to V and F+ centres. V centre appears to correlate with the 150 °C TSL peak, while F+ centre could not be associated with the observed TSL peaks.  相似文献   

6.
Er and Yb co-doped ZnAl2O4 phosphors were prepared by solution combustion synthesis and the identification of Er and Yb were done by energy-dispersive X-ray analysis (EDX) studies. A luminescence at 1.5 μm, due to the 4I13/24I15/2 transition, has been studied in the NIR region in Er and Yb co-doped ZnAl2O4 phosphors upon 980 nm CW pumping. Er-doped ZnAl2O4 exhibits two thermally stimulated luminescence (TSL) peaks around 174°C and 483°C, while Yb co-doped ZnAl2O4 exhibits TSL peaks around 170°C and 423°C. Electron spin resonance (ESR) studies were carried out to identify defect centres responsible for TSL peaks observed in the phosphors. Room temperature ESR spectrum appears to be a superposition of two distinct centres. These centres are assigned to an O ion and F+ centre. O ion appears to correlate with the 174°C TSL peak and F+ centre appears to relate with the high temperature TSL peak at 483°C in ZnAl2O4:Er phosphor.  相似文献   

7.
Thermally stimulated luminescence (TSL) of ceramics having the structure of eulytine Bi4X3O12 (X = Si, Ge, Zr) on exposure to x-ray irradiation in the temperature region 80–400 K is studied. An analysis of the forms of the TSL curves implies that the recombination processes in the TSL peaks at 149 and 212 K in Bi4Si3O12 ceramics and at 143 and 230 K in Bi4Ge3O12 ceramics can be described by the linear kinetics. The spectral composition of TSL of the ceramics obtained is investigated, and the activation energy and frequency factors which correspond to the TSL maxima are determined by various methods. Based on common spectral and energy characteristics of TSL, a conclusion concerning the connection of TSL with recombination processes in common structural complexes of BiO6 9– is drawn.  相似文献   

8.
Solid nitrogen was investigated by activation spectroscopy methods – thermally stimulated luminescence and thermally stimulated exoelectron emission (TSL and TSEE) in combination with luminescence analysis. TSEE from solid nitrogen pre-irradiated by an electron beam was measured and investigated for the first time. A set of peaks both in TSL and TSEE were observed. It was found that one of the peaks in the TSEE curve is caused by release of electrons in the course of the α-β phase transition of solid nitrogen. The corresponding activation energy was estimated.  相似文献   

9.
Results of thermally stimulated luminescence (TSL) and conductivity (TSC) experiments on CdGa2S4 are reported. In the lower temperature region of the TSl curve a decay of luminescence is observed that is probably due to donor-acceptor pair recombination since no accompanying conduction is measured. The TSL and TSC curves of the undoped material further consist essentially of two peaks. If trap depths are calculated with various methods from the literature it turns out that for one peak different values are obtained. These differences cannot be explained with the conventional model consisting of one trapping level and one recombination level. If the results are compared with more complex models it follows that thermal quenching, the presence of a trap distribution, thermally disconnected traps and recombination via excited states, are important. This is most clearly demonstrated in the cases with excess Ga and with Ag or In as dopant. Although this approach probably yields valuable information about CdGa2S4, no definite conclusions may be drawn since some essential questions remain unsolved.  相似文献   

10.
Abstract

Decay kinetics of Mn4+ luminescence in SrTiO3 and thermal stimulation of this luminescence (TSL) after low-temperature irradiation with light from the 355—520 nm region, have been investigated in the temperature range of 4.2—150K and 12—110K, respectively, for the first time. It is concluded that TSL glow peaks are associated with thermal release of carriers from shallow traps followed by Mn5+→Mn4+(2E) and/or Mn3+→Mn4+ (2E) charge transfer decay kinetics has been explained by considering trap energy levels taking part in the TSL process.  相似文献   

11.
Thermostimulated luminescence (TSL) of PbWO4, Bi2WO6, and Y2WO6 ceramics on x-ray excitation is investigated. The spectral luminosity of the thermostimulated luminescence is analyzed. The thermal activation energies conforming to the corresponding thermostimulated luminescence peaks are determined. It is established that on emptying trapping centers radiative recombination occurs at the intrinsic-luminescence centers associated with tungsten-oxygen complexes WO4 2–.  相似文献   

12.
The quality crystals (Calcitic limestone) were selected using the UV–visible methylene blue adsorption method. The thermostimulated luminescence (TSL) glow curve characteristics of six well crystallized limestone samples were analyzed. The glow curves of unannealed sample show only one peak in the range 320–330 °C. The sample irradiated with a gamma dose of 100 Gy shows two additional peaks in the range of 113–125 °C and 242–260 °C when recorded with linear heating rate of 10 °C/s. The annealed sample also shows the same trend as that of irradiated sample. Annealing treatment above 250 °C increases the sensitivity of all TSL peaks except 320 °C. On the other hand, annealing at 750 °C caused a collapse in the TSL sensitivity. The enhancement in TSL sensitivity was found to depend on the annealing temperature and time. Annealing treatment at 650 °C for 4 h followed by quenching in air is the optimum condition for TSL sensitization. The response to gamma irradiation is linear in the range from 0.5 Gy to 104 Gy. The emission spectra of all the samples show an emission at around 610 nm but with different intensities for each TSL peak. With reference to earlier work, it may be assumed that the recombination site always involves Mn2+ ions. The observation made through infra-red (IR) and X-ray diffraction (XRD) studies with thermal treatment shows the structural changes of calcite from D3h to Cs symmetry at 750 °C. The Thermogravimetric-Differential Thermal Analysis (TG-DTA) analysis shows the calcite gets disordered at 760 °C. Hence, the collapse in the TSL sensitivity at 750 °C is due to structural change or structural disorderedness.  相似文献   

13.
We study deep trapping states in Ce3+-doped garnet crystals with the composition (Lu,Y,Gd)3(Ga,Al)5O12, recently shown as having remarkably high light yield. We use thermally stimulated luminescence (TSL) technique above room temperature and determine the composition Gd3Ga3Al2O12 as the host showing the lowest concentration of traps. This host consistently manifests very low afterglow comparable to that of the standard BGO crystal. We also perform TSL glow peak analysis based on the initial rise technique to evaluate trap depth and other characteristics associated with TSL peaks.  相似文献   

14.
The temperature dependence of the photoluminescence (PhL) spectral distributions has been reported for the lithium tetraborate Li2B4O7 (LTB) and Li2B4O7:Cu (LTB:Cu) single crystals and for glassy LTB:Cu. It was found that the emission peaks of the LTB and LTB:Cu single crystals are non-elementary and splittable by temperature increase into several elementary peaks. By the sample heating the temperature quenching of PhL as well as the redistribution of the PhL intensity among elementary peaks was observed. Heating of the LTB:Cu single crystal samples caused no shift of the spectral maxima of the individual PhL peaks. The curve describing the temperature dependency of individual PhL peaks for the LTB:Cu single crystal is characterized by maxima resulting from combination of PhL and thermostimulated luminescence (TSL). The PhL intensity for glassy LTB:Cu is significantly lower than that for LTB:Cu single crystal with the equivalent copper dopant content. As compared to the LTB:Cu single crystal, the PhL spectral maximum for glassy LTB:Cu is wider and shifted to the lower energy range. Heating of the glassy LTB:Cu sample results in the PhL temperature quenching without any shift of the spectral maximum.  相似文献   

15.
Abstract

The ionic, electronic and anion-diffusion controlled thermally stimulated relaxation (TSR) processes at 80—700 K in CaF2 BaF2 and LiBaF3 crystals (X-ray irradiated or non-irradiated) have been investigated by means of ionic conductivity, ionic thermally stimulated (TS) depolarization current (TSDC); as well as current (TSC), luminescence (TSL) and bleaching (TSB) techniques. Above 250—290 K broad and overlapping anion TSDC peaks and correlated TSB stages are detected. The TSB kinetics is initiated and controlled by anion detrapping and interaction with the localized charges, i.e., the anion-diffusion controlled TSR processes take place in fluorides. The TSL and TSC data for LiBaF3 indicate that the lifetime and drift of electrons at 80—250 K is very small because of deep retrapping. The main TSL peaks at 132K, 170K and 220 K are caused by Vk center detrapping and hole-diffusion controlled tunnel recombination within pairs like {Dn e?Vk }.  相似文献   

16.
Yttrium borate doped with uranium was prepared by mixing and heating yttrium oxide obtained through oxalate precipitation route, boric acid and requisite amount of nuclear-grade uranium oxide at high temperature. Photoluminescence (PL), thermally stimulated luminescence (TSL) and electron paramagnetic resonance (EPR) studies were carried out on gamma-irradiated doped/undoped yttrium borate samples in the temperature range 300-600 K. TSL studies showed the presence of two glow peaks at 414 and 471 K. PL studies along with lifetime decay investigation suggested uranium goes in the matrix as UO22+. EPR studies showed the presence of O2radical ion along with electron trapped in defect centres, which might have been produced for charge compensation. Apart from this, CO2 radical was also observed in the system having its origin from residual oxalate ion. Temperature dependence EPR studies of the observed radical confirmed the involvement of the CO2 and dioxide radical ion in the observed glow peaks. By correlating the TSL, PL and ESR data, probable mechanism is proposed for the observed TSL glow in the system.  相似文献   

17.
Thermally stimulated luminescence (TSL) of aluminoborosilicate glass doped with CdSe nanoparticles (28 and 47 Å) has been studied after exposure to ionizing radiation; the intense TSL peaks were observed at temperatures 150 and 85 °C, respectively. The optical absorption spectra, as well as TSL of the irradiated samples containing CuBr nanoparticles (44 Å) were also measured. In the case of CuBr, TSL was observed neither before nor after irradiation. The dependence of TSL intensity on irradiation time indicates that glass activated by CdSe nanoparticles shows promise as a dosimetric material.  相似文献   

18.
The luminescence and thermally stimulated recombination processes in lithium borate crystals Li6Gd(BO3)3 and Li6Gd(BO3)3:Ce have been studied. The steady-state luminescence spectra under X-ray excitation (X-ray luminescence), temperature dependences of the intensity of steady-state X-ray luminescence (XL), and thermally stimulated luminescence (TSL) spectra of these compounds have been investigated in the temperature range of 90–500 K. The intrinsic-luminescence 312-nm band, which is due to the 6 P J 8 S 7/2 transitions in Gd3+ matrix ions, dominates in the X-ray luminescence spectra of these crystals; in addition, there is a wide complex band at 400–420 nm, which is due to the d → f transitions in Ce3+ impurity ions. It is found that the steady-state XL intensity in these bands increases several times upon heating from 100 to 400 K. The possible mechanisms of the observed temperature dependence of the steady-state XL intensity and their correlation with the features of electronic-excitation energy transfer in these crystals are discussed. The main complex TSL peak at 110–160 K and a number of minor peaks, whose composition and structure depend on the crystal type, have been found in all crystals studied. The nature of the shallow traps that are responsible for TSL at temperatures below room temperature and their relation with defects in the lithium cation sublattice are discussed.  相似文献   

19.
Thermally stimulated luminescence (TSL) studies of gamma-irradiated uraniumdoped K2Ca2(SO4)3 revealed two glow peaks around 400 K and 435 K. Electron paramagnetic resonance (EPR) studies carried out on these samples have shown the formation of the radical ions SO 4 , SO 3 , SO 2 and O 3 . From the study of the thermal stabilities of these radical ions, it was found that the thermal destruction of SO 2 and SO 4 radical ions are associated with the glow peaks observed around 400 K and 435 K respectively. Uranate ion was identified as the luminescent centre for the observed TSL glow. The trap depth values for the glow peaks have been determined from TSL data.  相似文献   

20.
In this work, the thermally stimulated luminescence (TSL) and persistent luminescence (PLUM) properties of praseodymium doped yttrium aluminum garnet (YAG:Pr3+) exposed to β-irradiation are reported. X-ray diffraction (XRD) confirms a single phase of YAG obtained by the combustion method. Transmission electron microscopy (TEM) shows that powder particles appear to be irregular crystals with an average size of 67 nm. TSL glow-curve deconvolution of YAG:Pr3+ after β-irradiation consist in six peaks centered at 394, 450, 467, 543, 637 and 705 K. The TSL fading and PLUM signals were found to be associated with at least with two different kinds of traps, corresponding to the peaks located at 394, 450 and 467 K. YAG:Pr3+ nanophosphors analyzed in this work showed interesting features about the dosimetric sensitivity as well as the reproducibility for both TSL/PLUM techniques, with good linearity dose response. These results indicate that nanocrystalline YAG:Pr3+ is a good candidate for dosimetric applications in the range of 80 mGy-20 Gy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号