首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
Intestinal transepithelial transport of glucose is mediated by glucose transporters, and affects postprandial blood-glucose levels. This study investigates the effect of wood extracts rich in hydrolyzable tannins (HTs) that originated from sweet chestnut (Castanea sativa Mill.) and oak (Quercus petraea) on the expression of glucose transporter genes and the uptake of glucose and HT constituents in a 3D porcine-small-intestine epithelial-cell model. The viability of epithelial cells CLAB and PSI exposed to different HTs was determined using alamarBlue®. qPCR was used to analyze the gene expression of SGLT1, GLUT2, GLUT4, and POLR2A. Glucose uptake was confirmed by assay, and LC–MS/ MS was used for the analysis of HT bioavailability. HTs at 37 µg/mL were found to adversely affect cell viability and downregulate POLR2A expression. HT from wood extract Tanex at concentrations of 4 µg/mL upregulated the expression of GLUT2, as well as glucose uptake at 1 µg/mL. The time-dependent passage of gallic acid through enterocytes was influenced by all wood extracts compared to gallic acid itself as a control. These results suggest that HTs could modulate glucose uptake and gallic acid passage in the 3D cell model.  相似文献   

3.
Estrogenic molecules have been reported to regulate glucose homeostasis and may be beneficial for diabetes management. Here, we investigated the estrogenic effect of β-sitosterol-3-O-D-glucopyranoside (BSD), isolated from the fruits of Cupressus sempervirens and monitored its ability to regulate glucose utilization in skeletal muscle cells. BSD stimulated ERE-mediated luciferase activity in both ERα and ERβ-ERE luc expression system with greater response through ERβ in HEK-293T cells, and induced the expression of estrogen-regulated genes in estrogen responsive MCF-7 cells. In silico docking and molecular interaction studies revealed the affinity and interaction of BSD with ERβ through hydrophobic interaction and hydrogen bond pairing. Furthermore, prolonged exposure of L6-GLUT4myc myotubes to BSD raised the glucose uptake under basal conditions without affecting the insulin-stimulated glucose uptake, the effect associated with enhanced translocation of GLUT4 to the cell periphery. The BSD-mediated biological response to increase GLUT4 translocation was obliterated by PI-3-K inhibitor wortmannin, and BSD significantly increased the phosphorylation of AKT (Ser-473). Moreover, BSD-induced GLUT4 translocation was prevented in the presence of fulvestrant. Our findings reveal the estrogenic activity of BSD to stimulate glucose utilization in skeletal muscle cells via PI-3K/AKT-dependent mechanism.  相似文献   

4.
5.
汤璇  陈静  沈旭 《中国科学:化学》2012,(12):1760-1773
葡萄糖转运蛋白4(glucose transporter 4,GLUT4)是胰岛素响应组织骨骼肌和脂肪组织内负责葡萄糖吸收的转运蛋白,它与生物体糖代谢过程密切相关.在肥胖或以胰岛素抵抗为特征的2型糖尿病等代谢性疾病中,GLUT4功能受损;反之,GLUT4功能的变化也能影响整体的糖代谢水平.本文概述了GLUT4的功能、组织分布、功能调节方式以及调控GLUT4功能的小分子化合物的研究进展,讨论了GLUT4在其他疾病中的应用,并展望了其未来研究方向.  相似文献   

6.
Tumor cells rely on aerobic glycolysis to support growth and survival, thus require more glucose supply. Glucose transporters GLUTs, primarily GLUT1, are overexpressed in various cancers. Targeting GLUTs has been regarded as a promising anticancer strategy. In this study, we first evaluated 75 potential GLUT1 inhibitors obtained from virtual screening of the NCI chemical library by a high-throughput cell-based method using a fluorescent glucose analogue 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxy-d-glucose (2-NBDG) in COS-7 and SKOV3 cells that express high levels of GLUT1. Four compounds, #12, #16, #43 and #69, that significantly inhibited glucose uptake were further evaluated using flow cytometry directly measuring 2-NBDG uptake at the single-cell level and a Glucose Uptake-GloTM assay indirectly measuring 2-deoxy-d-glucose uptake in SKOV3, COS-7 or MCF-7 cells. The inhibitory effect on cancer cell growth was also determined in SKOV3 and MCF-7 cells, and #12 exhibited the best growth inhibitory effect equivalent to a known GLUT1 inhibitor WZB117. Although the anticancer effect of the identified potential GLUT1 inhibitors was moderate, they may enhance the activity of other anticancer drugs. Indeed, we found that #12 synergistically enhanced the anticancer activity of metformin in SKOV3 ovarian cancer cells.  相似文献   

7.
8.
Obesity is an important cause of diseases such as type 2 diabetes, non-alcoholic fatty liver and atherosclerosis. The use of ingredients extracted from traditional Chinese medicine for weight loss is now receiving more and more attention. Ginseng has been recorded since ancient times for the treatment of diabetes. The (20R)-Panaxadiol (PD) belongs to the ginseng diol type compounds, which are moderately bioavailable and may remain in the intestinal tract for a longer period of time. This study investigated the potential positive effect of PD in ob/ob mice and evaluated its effect against obesity. The ob/ob mice were administered PD for ten weeks. Our study showed that PD could improve obesity, glucose tolerance disorder, as well as gut dysbiosis. Panaxadiol decreased ob/ob mice’s Firmicutes/Bacteroidetes (F/B). Furthermore, 16S rRNA gene sequencing of the fecal microbiota suggested that PD changed the composition of the gut microbiota in ob/ob mice and modulated specific bacteria such as lactobacillus, prevotellace and so on. Moreover, PD improved the intestinal wall integrity. In conclusion, our results suggest that (20R)-Panaxadiol, as an active ingredient of the traditional Chinese medicinal herb ginseng, may improve obesity to some extent via improving gut microbiota  相似文献   

9.
In adipocytes, insulin stimulates glucose transport primarily by promoting the translocation of GLUT4 to the plasma membrane. Requirements for Ca(2+)/calmodulin during insulin-stimulated GLUT4 translocation have been demonstrated; however, the mechanism of action of Ca(2+) in this process is unknown. Recently, myosin II, whose function in non-muscle cells is primarily regulated by phosphorylation of its regulatory light chain by the Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK), was implicated in insulin-stimulated GLUT4 translocation. The present studies in 3T3-F442A adipocytes demonstrate the novel finding that insulin significantly increases phosphorylation of the myosin II RLC in a Ca(2+)-dependent manner. In addition, ML-7, a selective inhibitor of MLCK, as well as inhibitors of myosin II, such as blebbistatin and 2,3-butanedione monoxime, block insulin-stimulated GLUT4 translocation and subsequent glucose transport. Our studies suggest that MLCK may be a regulatory target of Ca(2+)/calmodulin and may play an important role in insulin-stimulated glucose transport in adipocytes.  相似文献   

10.
Type 2 diabetes mellitus (T2DM) is linked to insulin resistance and a loss of insulin sensitivity, leading to millions of deaths worldwide each year. T2DM is caused by reduced uptake of glucose facilitated by glucose transporter 4 (GLUT4) in muscle and adipose tissue due to decreased intracellular translocation of GLUT4-containing vesicles to the plasma membrane. To treat T2DM, novel medications are required. Through a fluorescence microscopy-based high-content screen, we tested more than 600 plant extracts for their potential to induce GLUT4 translocation in the absence of insulin. The primary screen in CHO-K1 cells resulted in 30 positive hits, which were further investigated in HeLa and 3T3-L1 cells. In addition, full plasma membrane insertion was examined by immunostaining of the first extracellular loop of GLUT4. The application of appropriate inhibitors identified PI3 kinase as the most important signal transduction target relevant for GLUT4 translocation. Finally, from the most effective hits in vitro, four extracts effectively reduced blood glucose levels in chicken embryos (in ovo), indicating their applicability as antidiabetic pharmaceuticals or nutraceuticals.  相似文献   

11.
The observation that ascorbate known to retain pro-oxidant properties induces cell death in a number of immortal cell lines, led us to examine its mechanism and whether it is involved in oxidative stress injury in such asocorbate-enriched tissue cells as hepatocytes. In rat liver homogenates, higher concentrations (1 and 3 mM) of ascorbate suppressed lipid peroxide productions but lower concentrations (0.1 and 0.3 mM) did not. In contrast to the homogenate, ascorbate increased lipid peroxide production in liver slices in a concentration dependant manner. Iso-ascorbate, the epimer of ascorbate did not cause an increase the oxidative stress in liver slices. This differential effect between homogenates and liver slices implies that cellular integrity is required for ascorbate to induce oxidative stress. Wortmannin, an inhibitor of the GLUT (glucose transporter) thought to transport dehydroascorbate into cells, inhibited [(14)C]-ascorbate uptake and suppressed oxidative stress in liver slices. Wortmannin suppressed that [(14)C]-ascorbate uptake by GLUT following oxidation to [(14)C]dehydroascorbate. Taken together, these observations support our hypothesis that ascorbate is oxidized to dehydroascorbate by molecular oxygen in solution (i.e., plasma and culture medium) which is then carried into hepatocytes (via a GLUT) where it is reduced back to ascorbate causing oxidative stress.  相似文献   

12.
We have studied the effects of anti-GLUT1 antibodies on the uptake of glucose into erythrocytes. Glucose transport into human erythrocyte ghosts was measured directly using 3H-2-deoxy-glucose, or indirectly by monitoring associated volume changes using light scattering. The uptake of glucose was significantly inhibited in ghosts resealed in solutions containing specific antibodies against GLUT1. Such an effect was not observed when an antibody against the oestrogen receptor, lacking specificity towards GLUT1, was employed instead. The antibodies were also without effect on the efflux of preloaded glucose from erythrocyte ghosts. The demonstration that anti-GLUT antibodies can inhibit glucose uptake is support for the hypothesis that they exaggerate the cytoplasmic barrier to glucose uptake created by endofacial segments of GLUT1.  相似文献   

13.
14.
Type 2 diabetes (T2D) is a chronic metabolic disease, which could affect the daily life of patients and increase their risk of developing other diseases. Synthetic anti-diabetic drugs usually show severe side effects. In the last few decades, plant-derived drugs have been intensively studied, particularly because of a rapid development of the instruments used in analytical chemistry. We tested the efficacy of Gundelia tournefortii L. (GT) in increasing the translocation of glucose transporter-4 (GLUT4) to the myocyte plasma membrane (PM), as a main strategy to manage T2D. In this study, GT methanol extract was sub-fractionated into 10 samples using flash chromatography. The toxicity of the fractions on L6 muscle cells, stably expressing GLUTmyc, was evaluated using the MTT assay. The efficacy with which GLUT4 was attached to the L6 PM was evaluated at non-toxic concentrations. Fraction 6 was the most effective, as it stimulated GLUT4 translocation in the absence and presence of insulin, 3.5 and 5.2 times (at 250 μg/mL), respectively. Fraction 1 and 3 showed no significant effects on GLUT4 translocation, while other fractions increased GLUT4 translocation up to 2.0 times. Gas chromatography–mass spectrometry of silylated fractions revealed 98 distinct compounds. Among those compounds, 25 were considered anti-diabetic and glucose disposal agents. These findings suggest that GT methanol sub-fractions exert an anti-diabetic effect by modulating GLUT4 translocation in L6 muscle cells, and indicate the potential of GT extracts as novel therapeutic agents for T2D.  相似文献   

15.
Type-2 diabetes mellitus (T2DM), the leading global health burden of this century majorly develops due to obesity and hyperglycemia-induced oxidative stress in skeletal muscles. Hence, developing novel drugs that ameliorate these pathological events is an immediate priority. The study was designed to analyze the possible role of Stevioside, a characteristic sugar from leaves of Stevia rebaudiana (Bertoni) on insulin signaling molecules in gastrocnemius muscle of obesity and hyperglycemia-induced T2DM rats. Adult male Wistar rats rendered diabetic by administration of high fat diet (HFD) and sucrose for 60 days were orally administered with SIT (20 mg/kg/day) for 45 days. Various parameters were estimated including fasting blood glucose (FBG), serum lipid profile, oxidative stress markers, antioxidant enzymes and expression of insulin signaling molecules in diabetic gastrocnemius muscle. Stevioside treatment improved glucose and insulin tolerances in diabetic rats and restored their elevated levels of FBG, serum insulin and lipid profile to normalcy. In diabetic gastrocnemius muscles, Setvioside normalized the altered levels of lipid peroxidase (LPO), hydrogen peroxide (H2O2) and hydroxyl radical (OH*), antioxidant enzymes (CAT, SOD, GPx and GSH) and molecules of insulin signaling including insulin receptor (IR), insulin receptor substrate-1 (IRS-1) and Akt mRNA levels. Furthermore, Stevioside enhanced glucose uptake (GU) and oxidation in diabetic muscles by augmenting glucose transporter 4 (GLUT 4) synthesis very effectively in a similar way to metformin. Results of molecular docking analysis evidenced the higher binding affinity with IRS-1 and GLUT 4. Stevioside effectively inhibits oxidative stress and promotes glucose uptake in diabetic gastrocnemius muscles by activating IR/IRS-1/Akt/GLUT 4 pathway. The results of the in silico investigation matched those of the in vivo study. Hence, Stevioside could be considered as a promising phytomedicine to treat T2DM.  相似文献   

16.
Our group has progressively reported on the impact of bioactive compounds found in rooibos (Aspalathus linearis) and their capacity to modulate glucose homeostasis to improve metabolic function in experimental models of type 2 diabetes. In the current study, we investigated how the dietary flavone, orientin, modulates the essential genes involved in energy regulation to enhance substrate metabolism. We used a well-established hepatic insulin resistance model of exposing C3A liver cells to a high concentration of palmitate (0.75 mM) for 16 hrs. These insulin-resistant liver cells were treated with orientin (10 µM) for 3 h to assess the therapeutic effect of orientin. In addition to assessing the rate of metabolic activity, end point measurements assessed include the uptake or utilization of glucose and palmitate, as well as the expression of genes involved in insulin signaling and regulating cellular energy homeostasis. Our results showed that orientin effectively improved metabolic activity, mainly by maintaining substrate utilization which was marked by enhanced glucose and palmitate uptake by liver cells subjected to insulin resistance. Interestingly, these effects can be explained by the improvement in the expression of genes involved in glucose transport (Glut2), insulin signaling (Irs1 and Pi3k), and energy regulation (Ampk and Cpt1). These preliminary findings lay an important foundation for future research to determine the bioactive properties of orientin against dyslipidemia or insulin resistance in reliable and well-established models of type 2 diabetes.  相似文献   

17.
Angiotensin II is a major effector molecule in the development of cardiovascular disease. In vascular smooth muscle cells (VSMCs), angiotensin II promotes cellular proliferation and extracellular matrix accumulation through the upregulation of plasminogen activator inhibitor-1 (PAI-1) expression. Previously, we demonstrated that small heterodimer partner (SHP) represses PAI-1 expression in the liver through the inhibition of TGF-β signaling pathways. Here, we investigated whether SHP inhibited angiotensin II-stimulated PAI-1 expression in VSMCs. Adenovirus-mediated overexpression of SHP (Ad-SHP) in VSMCs inhibited angiotensin II- and TGF-β-stimulated PAI-1 expression. Ad-SHP also inhibited angiotensin II-, TGF-β- and Smad3-stimulated PAI-1 promoter activity, and angiotensin II-stimulated AP-1 activity. The level of PAI-1 expression was significantly higher in VSMCs of SHP-/- mice than wild type mice. Moreover, loss of SHP increased PAI-1 mRNA expression after angiotensin II treatment. These results suggest that SHP inhibits PAI-1 expression in VSMCs through the suppression of TGF-β/Smad3 and AP-1 activity. Thus, agents that target the induction of SHP expression in VSMCs might help prevent the development and progression of atherosclerosis.  相似文献   

18.
As glucose is known to induce insulin secretion in pancreatic β cells, this study investigated the role of a phospholipase D (PLD)-related signaling pathway in insulin secretion caused by high glucose in the pancreatic β-cell line MIN6N8. It was found that the PLD activity and PLD1 expression were both increased by high glucose (33.3 mM) treatment. The dominant negative PLD1 inhibited glucose-induced Beta2 expression, and glucose-induced insulin secretion was blocked by treatment with 1-butanol or PLD1-siRNA. These results suggest that high glucose increased insulin secretion through a PLD1-related pathway. High glucose induced the binding of Arf6 to PLD1. Pretreatment with brefeldin A (BFA), an Arf inhibitor, decreased the PLD activity as well as the insulin secretion. Furthermore, BFA blocked the glucose-induced mTOR and p70S6K activation, while mTOR inhibition with rapamycin attenuated the glucose induced Beta2 expression and insulin secretion. Thus, when taken together, PLD1 would appear to be an important regulator of glucose-induced insulin secretion through an Arf6/PLD1/mTOR/p70S6K/Beta2 pathway in MIN6N8 cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号