首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Generation of paired photons with controllable waveforms   总被引:2,自引:0,他引:2  
We describe experiments and theory showing the generation of counterpropagating paired photons with coherence times of about 50 ns and waveforms that are controllable at a rudimentary level. Using cw lasers, electromagnetically induced transparency and cold 87Rb atoms we generate paired photons into opposing single-mode optical fibers at a rate of approximately 12 000 pairs per second.  相似文献   

2.
Xiaoxin Ma 《Optics Communications》2011,284(19):4558-4562
Correlated signal and idler photon pairs with small detuning in the telecom band can be generated through spontaneous four-wave mixing in dispersion shift fibers. However, photons originated from other nonlinear processes in optical fibers, such as Raman scattering and self-phase modulation, may contaminate the photon pairs. It has been proved that photons produced by Raman scattering are the background noise of photon pairs. Here we show that photons induced by self-phase modulation of pump pulses are another origin of background noise. After studying the dependence of self-phase modulation induced photons in signal and idler bands, we demonstrate that the quantum correlation of photon pairs can be degraded by the self-phase modulation effect. The investigations are useful for characterizing and optimizing an all fiber source of photon pairs.  相似文献   

3.
Using spontaneous optical parametric downconversion, we experimentally demonstrate heralded generation of shaped single photons, whose modes are tailored indirectly by applying amplitude modulation on the pump field that drives the downconversion process. Our experiment opens a door to creating high-quality, mode-shaped single photons at a substantially higher efficiency than is possible with the existing method of direct single-photon shaping.  相似文献   

4.
原子系综中的Duan-Lukin-Cirac-Zoller(DLCZ)过程是产生光与原子(量子界面)量子关联和纠缠的重要手段.当一束写光与原子发生作用时,将会产生斯托克斯(Stokes)光子的自发拉曼散射,并同时产生一个自旋波(spin-wave)存储在原子系综中,上述过程即为DLCZ量子记忆产生过程.这一过程被广泛地研究.本文将87Rb原子系综放入驻波腔,并使Stokes光子与光学腔共振,我们观察到有腔且锁定的情况下Stokes光子产生概率比无腔时增大了8.7倍.在此条件下研究了Stokes光子产生概率和写光功率的关系,Stokes光子产生概率随写光功率线性增大.  相似文献   

5.
6.
We present an experimental proposal for the generation of photon triplets based on third-order spontaneous parametric downconversion in thin optical fibers. Our analysis includes expressions for the quantum state, which describes the photon triplets and for the generation rate in terms of all experimental parameters. We also present, for a specific source design, numerically calculated generation rates.  相似文献   

7.
Quantum networks strongly depend on the efficient interactions between flying photonic quantum bits and local long-lived atomic matter nodes. To achieve the efficient quantum interfaces between polarization-encoding photons and spin-encoding atoms, polarization-entangled paired photons with a bandwidth narrower than the natural linewidth of the atoms are highly required. In this paper, we review the generation of subnatural-linewidth polarization-entangled paired photons through spontaneous four-wave mixing with cold atoms, which is very suitable for the application of quantum networks.  相似文献   

8.
《Physics letters. A》2006,355(2):81-86
Assuming that Pauli channels simulate the effect of optical fibers on polarization entangled photons we theoretically find the threshold distance beyond which such pairs loose their entanglement. From the current experimental data and by taking into account all other loss factors, like absorption, we give estimates for these threshold distances.  相似文献   

9.
We report the generation of nondegenerate narrow-bandwidth paired photons with time-frequency and polarization entanglements from laser cooled atoms. We observe the two-photon interference caused by Rabi splitting with a coherence time of about 30 ns and a visibility of 81.8% which verifies the time-frequency entanglement of the paired photons. The polarization entanglement is confirmed by polarization correlation measurements which exhibit a visibility of 89.5% and characterized by quantum-state tomography with a fidelity of 90.8%. Taking into account the transmission losses and duty cycle, we estimate that the system generates hyperentangled paired photons into opposing single-mode fibers at a rate of 320 pairs per second.  相似文献   

10.
We present the novel embodiment of a photonic qubit that makes use of one continuous spatial degree of freedom of a single photon and relies on the parity of the photon's transverse spatial distribution. Using optical spontaneous parametric down-conversion to produce photon pairs, we demonstrate the controlled generation of entangled-photon states in this new space. Specifically, two Bell states, and a continuum of their superpositions, are generated by simple manipulation of a classical parameter, the optical-pump spatial parity, and not by manipulation of the entangled photons themselves. An interferometric device, isomorphic in action to a polarizing beam splitter, projects the spatial-parity states onto an even-odd basis. This new physical realization of photonic qubits could be used as a foundation for future experiments in quantum information processing.  相似文献   

11.
We demonstrate coherent control of the optical transition of single nitrogen-vacancy defect centers in diamond. On applying short resonant laser pulses, we observe optical Rabi oscillations with a half period as short as 1 ns, an order of magnitude shorter than the spontaneous emission time. By studying the decay of Rabi oscillations, we find that the decoherence is dominated by laser-induced spectral jumps. By using a low-power probe pulse as a detuning sensor and applying postselection, we demonstrate that spectral diffusion can be overcome in this system to generate coherent photons.  相似文献   

12.
We propose a scheme for generating high fidelity three-dimensional entangled state for two atomic ensembles in spatially separated cavities coupled by an optical fiber. By employing multiple atoms in a cavity and resonant interaction between atoms and photons, the interaction time can be shortened greatly. Furthermore, we study the effects of spontaneous emission of atoms and photon leakage.  相似文献   

13.
Quantum optics with surface plasmons   总被引:1,自引:0,他引:1  
We describe a technique that enables strong, coherent coupling between individual optical emitters and guided plasmon excitations in conducting nanostructures at optical frequencies. We show that under realistic conditions optical emission can be almost entirely directed into the plasmon modes. As an example, we describe an application of this technique involving efficient generation of single photons on demand, in which the plasmon is efficiently outcoupled to a dielectric waveguide.  相似文献   

14.
Yu You 《中国物理 B》2021,30(8):84207-084207
We present a scheme for the quantum storage of single photons using electromagnetically induced transparency (EIT) in a low-finesse optical cavity, assisted by state-selected spontaneous atomic emission. Mediated by the dark mode of cavity EIT, the destructive quantum interference between the cavity input-output channel and state-selected atomic spontaneous emission leads to strong absorption of single photons with unknown arrival time and pulse shapes. We discuss the application of this phenomenon to photon counting using stored light.  相似文献   

15.
The creation of monolithically integratable sources of single and entangled photons is a top research priority with formidable challenges: The production, manipulation, and measurement of the photons should all occur in the same material platform, thereby fostering stability and scalability. Here we demonstrate efficient photon pair production in a semiconductor platform, gallium arsenide. Our results show type-I spontaneous parametric down-conversion of laser light from a 2.2 mm long Bragg-reflection waveguide, and we estimate its internal pair production efficiency to be 2.0×10(-8) (pairs/pump photon). This is the first time that significant pair production has been demonstrated in a structure that can be electrically self-pumped and which can form the basis for passive optical circuitry, bringing us markedly closer to complete integration of quantum optical technologies.  相似文献   

16.
We theoretically investigated the generation of quantum-correlated photon pair through spontaneous four-wave mixing in tellurite microstructured optical fiber (MOF). We evaluated the performance of photon pair generation in tellurite fibers based on Raman gain coefficient spectra. It was shown that the TBSN16P6W tellurite fiber provided a low Raman noise on correlation photon generation over a wide pump-idler detuning range. We can choose proper tellurite composition to obtain a low Raman gain window over wide range for correlated photon pair generation. We also designed the tellurite MOF structure to obtain a small dispersion value with high nonlinear coefficient at telecommunication wavelengths, thus realize efficient quantum-correlated photon pair generation.  相似文献   

17.
分布型光纤拉曼光子温度传感器系统的测温精度   总被引:8,自引:4,他引:8  
在分布型光纤拉曼光子温度传感器(DOFRPTS)系统中,自发拉曼光子是温度信息的载体,在2km光纤上实时采样1000个点,用于空间温度场分布的测量。系统采用拉曼光时域反射技术,对所测点进行定位。对分布光纤拉曼光子温度传感器系统的测温精度进行了讨论,由系统的信噪比来确定测温精度,提出了改善测温精度的方法,实际系统的测温精度达±1℃。  相似文献   

18.
Two photons in a pair generated in the nonlinear optical process of spontaneous parametric down-conversion are, in general, strongly quantum entangled. Accordingly, they contain extremely strong energy, time, polarization and momentum quantum correlations. This entanglement involves more than one quantum variable and has served as a powerful tool in fundamental studies of quantum theory. It is now playing a large role in the development of novel information processing techniques and new optical measurement technologies. Here we review some of these technologies and their origins.  相似文献   

19.
We investigate the Bose-Einstein condensation of photons and photon pairs in a two-dimension optical microcavity. We find that in the paraxial approximation, the mixed gas of photons and photon pairs is formally equivalent to a two dimension system of massive bosons with non-vanishing chemical potential, which implies the existence of two possible condensate phase. We also discuss the quantum phase transition of the system and obtain the critical point analytically. Moreover, we find that the quantum phase transition of the system can be interpreted as second harmonic generation.  相似文献   

20.
Jing&#  feng LIU&#  &#  &#  &#  &#  Xue&#  huaWANG&#  &#  &#  &#  &# 《Frontiers of Physics》2010,5(3):245
Spontaneous emission of emitters governing the performance of optoelectronic devices is a fundamental phenomenon, and it has strong environment-dependent characteristics. In this article, we mainly review the experimental and theoretical progresses in the control of spontaneous emission by manipulating optical modes with photonic crystals, optical microcavities and metallic nanostructures. The spontaneous emission from emitters in photonic crystals can be modified by the local density of states, and by employing photonic crystals, the devices’ efficiency is enhanced, the angular radiation pattern can be engineered, and highly efficient optoelectronic devices are achieved through decreasing the radiative lifetime. In quantum optical devices, microcavities would alter the lifetime of an excited state through tuning the resonance in the frequency and positioning between the emitters and cavity field, and inducing the emitters to emit spontaneous photons in a desired direction. The emerging enhanced electromagnetic field near metallic nanostructures can help to control and manipulate the spontaneous emission of an emitter. The use of micro- and nano-structures to manipulate spontaneous emission will open unprecedented opportunities for realizing functional photonic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号