首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
The circular dichroism spectrum of (?)-S-propyleneimine was recorded in the vapour phase and in hexane solution. SCF CI calculations of optical activity indicate that the absorption observed at ca. 50 000 cm?1 corresponds to an n → 3s Rydberg type transition. The possible nature of the next absorption is also discussed.  相似文献   

3.
4.
We model the solidification and subsequent cooling of a supercooled liquid droplet that is lying on a cold solid substrate after impact. It is assumed that solidification occurs for a given fixed droplet shape. The shapes used by the model are a sphere, truncated spheres, and an experimentally registered droplet shape. The freezing process is conduction-dominant and is modeled as a one-phase Stefan problem. This moving boundary problem is reformulated with the enthalpy method and then solved numerically with an implicit finite-difference technique. The numerical results for the simple case of a spherical droplet touching a surface are similar to those of a freely freezing spherical droplet and are well confirmed by the 1D asymptotic analytical model of Feuillebois et al. (J. Colloid Interface Sci. 169 (1995) 90). A freezing water droplet is considered as an example. The numerical results for full freezing time, subsequent cooling time, and last freezing point coordinate for the various droplets shapes are fitted by analytical functions depending on supercooling, thermal resistance of the target surface (expressed by Biot number), and spreading parameter. These functions are proposed for direct application, thus avoiding the need to solve the full freezing and cooling problem.  相似文献   

5.
Recent photofragment fluorescence excitation (PHOFEX) spectroscopy experiments have observed the Ã1A″ singlet excited state of isocyanogen (CNCN) for the first time. The observed spectrum is not completely assigned and significant questions remain about the excited states of this system. To provide insight into the energetically accessible excited states of CNCN, optimized geometries, harmonic vibrational frequencies, and excitation energies for the first three singlet excited states are determined using equation‐of‐motion coupled‐cluster theory with singles and doubles (EOM‐CCSD) and correlation‐consistent basis sets. Additionally, excited state coupled‐cluster methods which approximate the contributions from triples (CC3) are utilized to estimate the effect of higher‐order correlation on the energy of each excited state. For the Ã1A″ state, our best estimate for T0 is about 42,200 cm?1, in agreement with the experimentally estimated upper limit for the zero‐point level of 42,523 cm?1. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

6.
7.
Cross sections for excitation transfer between the low lying states of barium are calculated using a semiclassical Landau-Zener model and compared with existing experimental and theoretical data.  相似文献   

8.
Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure and of the spectroscopy of the low lying electronic states of the ZnF system. Using effective core pseudopotentials and aug-cc-pVQZ basis sets for both atoms, the potential curves, the dipole moment functions, and the transition dipole moments between relevant electronic states have been calculated at the multireference-configuration-interaction level. The spectroscopic constants calculated for the X(2)Sigma(+) ground state are in good agreement with the most recent theoretical and experimental values. It is shown that, besides the X(2)Sigma(+) ground state, the B(2)Sigma(+), the C(2)Pi, and the D(2)Sigma(+) states are bound. The A(2)Pi state, which has been mentioned in previous works, is not bound but its potential presents a shoulder in the Franck-Condon region of the X(2)Sigma(+) ground state. All of the low lying quartet states are found to be repulsive. The absorption transitions from the v=0 level of the X(2)Sigma(+) ground state toward the three bound states have been evaluated and the spectra are presented. The potential energy of the ZnF(-) molecular anion has been determined in the vicinity of its equilibrium geometry and the electronic affinity of ZnF (EA=1.843 eV with the zero energy point correction) has been calculated in agreement with the photoelectron spectroscopy experiments.  相似文献   

9.
Low‐lying excited states of planarly extended nanographenes are investigated using the long‐range corrected (LC) density functional theory (DFT) and the spin‐flip (SF) time‐dependent density functional theory (TDDFT) by exploring the long‐range exchange and double‐excitation correlation effects on the excitation energies, band gaps, and exciton binding energies. Optimizing the geometries of the nanographenes indicates that the long‐range exchange interaction significantly improves the C C bond lengths and amplify their bond length alternations with overall shortening the bond lengths. The calculated TDDFT excitation energies show that long‐range exchange interaction is crucial to provide accurate excitation energies of small nanographenes and dominate the exciton binding energies in the excited states of nanographenes. It is, however, also found that the present long‐range correction may cause the overestimation of the excitation energy for the infinitely wide graphene due to the discrepancy between the calculated band gaps and vertical ionization potential (IP) minus electron affinity (EA) values. Contrasting to the long‐range exchange effects, the SF‐TDDFT calculations show that the double‐excitation correlation effects are negligible in the low‐lying excitations of nanographenes, although this effect is large in the lowest excitation of benzene molecule. It is, therefore, concluded that long‐range exchange interactions should be incorporated in TDDFT calculations to quantitatively investigate the excited states of graphenes, although TDDFT using a present LC functional may provide a considerable excitation energy for the infinitely wide graphene mainly due to the discrepancy between the calculated band gaps and IP–EA values. © 2017 Wiley Periodicals, Inc.  相似文献   

10.
11.
The all-electron full configuration interaction (FCI) vertical excitation energies for some low lying valence and Rydberg excited states of BeH are presented in this article. A basis set of valence atomic natural orbitals has been augmented with a series of Rydberg orbitals that have been generated as centered onto the Be atom. The resulting basis set can be described as 4s2p1d/2s1p (Be/H) + 4s4p3d. It allows to calculate Rydberg states up to n= {3,4,5} of the s, p, and d series of Rydberg states. The FCI vertical ionization potential for the same basis set and geometry amounts to 8.298 eV. Other properties such as FCI electric dipole and quadrupole moments and FCI transition dipole and quadrupole moments have also been calculated. The results provide a set of benchmark values for energies, wave functions, properties, and transition properties for the five electron BeH molecule. Most of the states have large multiconfigurational character in spite of their essentially single excited nature and a number of them present an important Rydberg-valence mixing that is achieved through the mixed nature of the particle MO of the single excitations.  相似文献   

12.
13.
Journal of Solid State Electrochemistry -  相似文献   

14.
The potential energy curves of the molecular ion KRb+ have been investigated for the 60 lowest molecular states of symmetry 2Σ+, 2Π, 2Δ, and Ω = 1/2, 3/2, and 5/2. Using an ab initio method, the calculation has been done in a one active electron approach based on nonempirical pseudopotentials with core valence effects taken into account through parameterized l‐dependent polarization potentials. Using the canonicals functions approach a rovibrational study is done by calculating the eigenvalues Ev, the rotational constants Bv, the centrifugal distortion constants Dv (up to 135 vibrational levels), and the spectroscopic constants ωe and Be for the five electronic states (1)2Σ+, (3)2Σ+, (1)2Π, (1)Ω = 1/2, and (1)Ω = 3/2. No comparison of these values with other results is yet possible because they are given here for the first time. Extensive tables of energy values of Ev, Bv, and Dv are displayed at http://hplasim2.univ‐lyon1.fr/allouche . © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

15.
16.
17.
The lowest excited singlet and triplet states of neat α-oxalic acid dihydrate have been investigated by optical, optical Zeeman, and zero-field optically detected magnetic resonance (ODMR) spectroscopy at T ? 4 K. The observed electronic transitions in absorption are assigned as 1Au1Ag0 = 34131 cm?1) from its normal polarizatio These correspond to the expected lowest lying 1,3nπ* excitations in trans-α-dicarbonyls. The 3Au1Ag phosphorescence is also observed. Monitoring the phosphorescence intensity, the fine structure splittings and principal axes' orientation and the kinetic parameters of the 3Au s The fine structure constants are X = 2510.0, Y = ?1800.3, and Z = ?709.7 MHZ where the x axis is in-plane and parallel to the carbo The absolute signs of the constants have been established by optical Zeeman measurements. The τx zero-field spin state has the largest total phosphorescence rate, radiative rate, and populating rate. The τx activity in the 0 - 0 band is polarized mainly along the x axis. However, considerable normal polarization associated with an in-p  相似文献   

18.
19.
A temperature-induced commensurate solid-solid phase transition in self-assembled monolayers (SAMs) of alkylthiolates lying on Pt(111) is predicted from molecular dynamics simulations based on ab initio potential energy surfaces. As the system cools down from room temperature to low enough temperature, SAMs of alkylthiolates with more than ~12 carbon atoms undergo an abrupt change of orientation from a nearly upright to a tilted configuration. As the initial hexagonal arrangement of the sulfur headgroups is kept fixed during the simulations, the phase transition is entirely governed by chain-chain interactions. Similar commensurate phase transitions are predicted for hexagonally arranged SAMs with lattice spacings of the order of 4.7-4.9 ?, which, among others, excludes the well-known cases of densely packed SAMs of alkylthiolates on Au(111) and Ag(111). These findings could be relevant for the design of novel electronic or optical devices controllable by temperature.  相似文献   

20.
《Chemical physics letters》2002,350(1-2):88-94
The utility of time-dependent density functional theory (TDDFT) in predicting excitation energies is tested for the low lying excited states of F2, a system that has posed severe challenges to ab initio quantum theory. It is shown that TDDFT using B3LYP functional predicts the excitation energies in good agreement with experiment. In some cases, the agreement is better than that for the post-Hartree–Fock methods like CASSCF and MRCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号