首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with the global solvability of the first initial boundary value problem for the quasilinear parabolic equations with two independent variables: a(t,x,u,uxINF>)uxxm ut=f(t,x,u,uxINF>). We investigate the case when the growth of [(|f(t,x,u,p)|)/(a(t,x,u,p))]{{|f(t,x,u,p)|}\over {a(t,x,u,p)}} with respect to p is faster than p2 when |p|M X. Conditions which guarantee the global classical solvability of the problem are formulated.  相似文献   

2.
Entropy Solutions for Nonlinear Degenerate Problems   总被引:9,自引:0,他引:9  
We consider a class of elliptic-hyperbolic degenerate equations g(u)-Db(u) +\divgf(u) = fg(u)-\Delta b(u) +\divg\phi (u) =f with Dirichlet homogeneous boundary conditions and a class of elliptic-parabolic-hyperbolic degenerate equations g(u)t-Db(u) +\divgf(u) = fg(u)_t-\Delta b(u) +\divg\phi (u) =f with homogeneous Dirichlet conditions and initial conditions. Existence of entropy solutions for both problems is proved for nondecreasing continuous functions g and b vanishing at zero and for a continuous vectorial function J satisfying rather general conditions. Comparison and uniqueness of entropy solutions are proved for g and b continuous and nondecreasing and for J continuous.  相似文献   

3.
This paper is concerned with the uniqueness and L1 continuous dependence of entropy solutions for nonlinear hyperbolic systems of conservation laws. We study first a class of linear hyperbolic systems with discontinuous coefficients: Each propagating shock wave may be a Lax shock, or a slow or fast undercompressive shock, or else a rarefaction shock. We establish a result of L1 continuous dependence upon initial data in the case where the system does not contain rarefaction shocks. In the general case our estimate takes into account the total strength of rarefaction shocks. In the proof, a new time-decreasing, weighted L1 functional is obtained via a step-by-step algorithm. To treat nonlinear systems, we introduce the concept of admissible averaging matrices which are shown to exist for solutions with small amplitude of genuinely nonlinear systems. Interestingly, for many systems of continuum mechanics, they also exist for solutions with arbitrary large amplitude. The key point is that an admissible averaging matrix does not exhibit rarefaction shocks. As a consequence, the L1 continuous dependence estimate for linear systems can be extended to nonlinear hyperbolic systems using a wave-front tracking technique.  相似文献   

4.
We prove the asymptotic stability of two-state nonplanar Riemann solutions for a class of multidimensional hyperbolic systems of conservation laws when the initial data are perturbed and viscosity is added. The class considered here is those systems whose flux functions in different directions share a common complete system of Riemann invariants, the level surfaces of which are hyperplanes. In particular, we obtain the uniqueness of the self-similar L entropy solution of the two-state nonplanar Riemann problem. The asymptotic stability to which the main result refers is in the sense of the convergence as t→∞ in Lloc1 of the space of directions ξ = x/t. That is, the solution u(t, x) of the perturbed problem satisfies u(t, tξ)→R(ξ) as t→∞, in Lloc1(ℝn), where R(ξ) is the self-similar entropy solution of the corresponding two-state nonplanar Riemann problem.  相似文献   

5.
We study the spectral and linear stability of Riemann solutions with multiple Lax shocks for systems of conservation laws. Using a self-similar change of variables, Riemann solutions become stationary solutions for the system u t + (Df(u) − x I)u x = 0. In the space of O((1 + |x|)−η) functions, we show that if , then λ is either an eigenvalue or a resolvent point. Eigenvalues of the linearized system are zeros of the determinant of a transcendental matrix. On some vertical lines in the complex plane, called resonance lines, the determinant can be arbitrarily small but nonzero. A C 0 semigroup is constructed. Using the Gearhart–Prüss Theorem, we show that the solutions are O(e γ t ) if γ is greater than the real parts of the eigenvalues and the coordinates of resonance lines. We study examples where Riemann solutions have two or three Lax-shocks. Dedicated to Professor Pavol Brunovsky on his 70th birthday.  相似文献   

6.
Nonlinear relaxation dynamics of highly entangled solutions of high molecular weight 1,4-polybutadiene (PB) in a PB oligomer are studied in steady shear and step shear flows. Polymer entanglement densities vary in the range 14hN/Ne(J)⣴, allowing systematic investigation of entanglement effects on nonlinear rheological response. In agreement with previous steady shear studies using well entangled polystyrene solutions, a flow regime is found where both the steady-state shear stress and first normal stress difference remain constant or increase quite slowly with shear rate, leading to a plateau in the steady-state orientation angle. The magnitude of the average orientation angle in the plateau range is in accordance with predictions of a recent theory by Islam and Archer (2001). In step shear, the nonlinear relaxation modulus G(t,%) is approximately factorable into time-dependent G(t) and strain-dependent h(%) functions only at long times, t>5k, where 5k,O(Fd0). This finding is consistent with earlier observations for entangled polystyrene solutions; however the complex crossing pattern in G(t,%)h-1(%) that precede factorability in the latter materials is not observed. For all but the most entangled sample, apparent shear damping functions h (%,t)=(G(t,%))/(G(t)) immediately following imposition of shear are in nearly quantitative accord with the damping function hDEIA predicted by Doi-Edwards theory.  相似文献   

7.
Effect of different initial conditions on a turbulent round free jet   总被引:1,自引:0,他引:1  
Velocity measurements were made in two jet flows, the first exiting from a smooth contraction nozzle and the second from a long pipe with a fully developed pipe flow profile. The Reynolds number, based on nozzle diameter and exit bulk velocity, was the same (䏪,000) in each flow. The smooth contraction jet flow developed much more rapidly and approached self-preservation more rapidly than the pipe jet. These differences were associated with differences in the turbulence structure in both the near and far fields between the two jets. Throughout the shear layer for x<3d, the peak in the v spectrum occurred at a lower frequency in the pipe jet than in the contraction jet. For x́d, the peaks in the two jets appeared to be nearly at the same frequency. In the pipe jet, the near-field distributions of f(r) and g(r), the longitudinal and transverse velocity correlation functions, differed significantly from the contraction jet. The integral length scale Lu was greater in the pipe jet, whereas Lv was smaller. In the far field, the distributions of f(r) and g(r) were nearly similar in the two flows. The larger initial shear layer thickness of the pipe jet produced a dimensionally lower frequency instability, resulting in longer wavelength structures, which developed and paired at larger downstream distances. The regular vortex formation and pairing were disrupted in the shear layer of the pipe jet. The streamwise vortices, which enhance entrainment and turbulent mixing, were absent in the shear layer of the pipe jet. The formation of large-scale structures should occur much farther downstream in the pipe jet than in the contraction jet.  相似文献   

8.
The detailed mean flow and turbulence measurements of a turbulent air slot jet impinging on two different semi-circular convex surfaces were investigated in both free jet and impingement wall jet regions at a jet Reynolds number Rew=12,000, using a hot-wire X-probe anemometer. The parametric effects of dimensionless circumferential distance, S/W=2.79-7.74, slot jet-to-impingement surface distance Y/W=1-13, and surface curvature D/W=10.7 and 16 on the impingement wall jet flow development along a semi-circular convex surface were examined. The results show that the effect of surface curvature D/W increases with increasing S/W. Compared with transverse Reynolds normal stress, [`(v2 )] /Um2 \overline {v^2 } /U_{\rm m}^2 , the streamwise Reynolds normal stress, [`(u2 )] /Um2 \overline {u^2 } /U_{\rm m}^2 , is strongly affected by the examined dimensionless parameters of D/W, Y/W and S/W in the near-wall region. It is also evidenced that the Reynolds shear stress, -[`(uv)] /Um2 - \overline {uv} /U_{\rm m}^2 is much more sensitive to surface curvature, D/W.  相似文献   

9.
We consider the three-dimensional Navier-Stokes initial value problem in the exterior of a rotating obstacle. It is proved that a unique solution exists locally in time if the initial velocity possesses the regularity L1/2. This regularity assumption is the same as that in the famous paper of Fujita &; Kato. An essential step for the proof is the deduction of a certain smoothing property together with estimates near t˸ of the semigroup, which is not an analytic one, generated by the operator \Cal Lu = -P[\De u+(\om×x)·\na u-\om×u]\Cal Lu= -P\left[\De u+(\om\times x)\cdot\na u-\om\times u\right] in the space L2, where y stands for the angular velocity of the rotating obstacle and P denotes the projection associated with the Helmholtz decomposition.  相似文献   

10.
For 2D Navier--Stokes equations defined in a bounded domain W \Omega we study stabilization of solution near a given steady-state flow [^(v)](x) \hat v(x) by means of feedback control defined on a part G \Gamma of boundary ?W \partial\Omega . New mathematical formalization of feedback notion is proposed. With its help for a prescribed number s > 0 \sigma > 0 and for an initial condition v0(x) placed in a small neighbourhood of [^(v)](x) \hat v(x) a control u(t,x'), x¢ ? G x' \in \Gamma , is constructed such that solution v(t,x) of obtained boundary value problem for 2D Navier--Stokes equations satisfies the inequality: ||v(t,·)-[^(v)]||H1\leqslant ce-st    for  t \geqslant 0 \|v(t,\cdot)-\hat v\|_{H^1}\leqslant ce^{-\sigma t}\quad {\rm for}\; t \geqslant 0 . To prove this result we firstly obtain analogous result on stabilization for 2D Oseen equations.  相似文献   

11.
Asymptotic Variational Wave Equations   总被引:1,自引:0,他引:1  
We investigate the equation (u t +(f(u)) x ) x =f ′ ′(u) (u x )2/2 where f(u) is a given smooth function. Typically f(u)=u 2/2 or u 3/3. This equation models unidirectional and weakly nonlinear waves for the variational wave equation u tt c(u) (c(u)u x ) x =0 which models some liquid crystals with a natural sinusoidal c. The equation itself is also the Euler–Lagrange equation of a variational problem. Two natural classes of solutions can be associated with this equation. A conservative solution will preserve its energy in time, while a dissipative weak solution loses energy at the time when singularities appear. Conservative solutions are globally defined, forward and backward in time, and preserve interesting geometric features, such as the Hamiltonian structure. On the other hand, dissipative solutions appear to be more natural from the physical point of view.We establish the well-posedness of the Cauchy problem within the class of conservative solutions, for initial data having finite energy and assuming that the flux function f has a Lipschitz continuous second-order derivative. In the case where f is convex, the Cauchy problem is well posed also within the class of dissipative solutions. However, when f is not convex, we show that the dissipative solutions do not depend continuously on the initial data.  相似文献   

12.
We study the nonlinear hyperbolic partial differential equation, (u t+uux)x=1/2u x 2 . This partial differential equation is the canonical asymptotic equation for weakly nonlinear solutions of a class of hyperbolic equations derived from variational principles. In particular, it describes waves in a massive director field of a nematic liquid crystal.Global smooth solutions of the partial differential equation do not exist, since their derivatives blow up in finite time, while weak solutions are not unique. We therefore define two distinct classes of admissible weak solutions, which we call dissipative and conservative solutions. We prove the global existence of each type of admissible weak solution, provided that the derivative of the initial data has bounded variation and compact support. These solutions remain continuous, despite the fact that their derivatives blow up.There are no a priori estimates on the second derivatives in any L p space, so the existence of weak solutions cannot be deduced by using Sobolev-type arguments. Instead, we prove existence by establishing detailed estimates on the blowup singularity for explicit approximate solutions of the partial differential equation.We also describe the qualitative properties of the partial differential equation, including a comparison with the Burgers equation for inviscid fluids and a number of illustrative examples of explicit solutions. We show that conservative weak solutions are obtained as a limit of solutions obtained by the regularized method of characteristics, and we prove that the large-time asymptotic behavior of dissipative solutions is a special piecewise linear solution which we call a kink-wave.  相似文献   

13.
The Dafermos regularization of a system of n hyperbolic conservation laws in one space dimension has, near a Riemann solution consisting of n Lax shock waves, a self-similar solution u = u ε(X/T). In Lin and Schecter (2003, SIAM J. Math. Anal. 35, 884–921) it is shown that the linearized Dafermos operator at such a solution may have two kinds of eigenvalues: fast eigenvalues of order 1/ε and slow eigenvalues of order one. The fast eigenvalues represent motion in an initial time layer, where near the shock waves solutions quickly converge to traveling-wave-like motion. The slow eigenvalues represent motion after the initial time layer, where motion between the shock waves is dominant. In this paper we use tools from dynamical systems and singular perturbation theory to study the slow eigenvalues. We show how to construct asymptotic expansions of eigenvalue-eigenfunction pairs to any order in ε. We also prove the existence of true eigenvalue-eigenfunction pairs near the asymptotic expansions.  相似文献   

14.
Let be a domain. Suppose that fW1,1loc(Ω,R2) is a homeomorphism such that Df(x) vanishes almost everywhere in the zero set of Jf. We show that f-1W1,1loc(f(Ω),R2) and that Df−1(y) vanishes almost everywhere in the zero set of Sharp conditions to quarantee that f−1W1,q(f(Ω),R2) for some 1<q≤2 are also given.  相似文献   

15.
. Existence of minimizers for a volume-constrained energy $ E(u) := \int_{\Omega} W(\nabla u)\, dx Existence of minimizers for a volume-constrained energy E(u) : = òW W(?udx E(u) := \int_{\Omega} W(\nabla u)\, dx where LN({u = zi}) = ai, i = 1, ?, P, {\cal L}^N(\{u = z_i\}) = \alpha_i, i = 1, \ldots, P, is proved for the case in which ziz_i are extremal points of a compact, convex set in \Bbb Rd\Bbb R^d and under suitable assumptions on a class of quasiconvex energy densities W. Optimality properties are studied in the scalar-valued problem where d=1d=1, P=2P=2, W(x)=|x|2W(\xi)=|\xi|^2, and the &-limit as the sum of the measures of the 2 phases tends to \L(W)\L(\Omega) is identified. Minimizers are fully characterized when N=1N=1, and candidates for solutions are studied for the circle and the square in the plane.  相似文献   

16.
On thermodynamic potentials in linear thermoelasticity   总被引:1,自引:0,他引:1  
The four thermodynamic potentials, the internal energy u=uij,s), the Helmholtz free energy f=fij,T), the Gibbs energy g=gij,T) and the enthalpy h=hij,s) are derived, independently of each other, by using the Duhamel–Neumann extension of Hooke's law and an assumed linear dependence of the specific heat on temperature. A systematic procedure is then presented to express all thermodynamic potentials in terms of four possible pairs of independent state variables. This procedure circumvents a tedious transition from one potential to another, based on the formal change of variables, and inversions of the stress–strain and entropy–temperature relations. The general results are applied to uniaxial loading paths under isothermal, adiabatic, constant stress, and constant strain conditions. An interplay of adiabatic and isothermal elastic constants in the expressions for exchanged heat along certain thermodynamic paths is indicated.  相似文献   

17.
We consider in this paper an isothermal model of nonlinear elasticity. This model is described by two conservation laws that define a problem of mixed type, both elliptic and hyperbolic. We restrict ourselves to the linearly degenerate case, and consider Riemann data that lies in the hyperbolic regions. The lack of uniqueness of the Riemann problem is solved by the introduction of a so-called kinetic relation, used to narrow the set of admissible subsonic phase transitions. In this situation, we consider the Riemann problem for any data lying in the hyperbolic region, using either explicit computations or geometric arguments. This construction allows us to give sufficient conditions on the kinetic relation in order that the generated Riemann solver possesses properties of uniqueness, globality, and continuous dependence on the initial data in the L 1 distance. Accepted October 1, 2000?Published online January 22, 2001  相似文献   

18.
The search for traveling wave solutions of a semilinear diffusion partial differential equation can be reduced to the search for heteroclinic solutions of the ordinary differential equation ü − cu̇f(u) = 0, where c is a positive constant and f is a nonlinear function. A heteroclinic orbit is a solution u(t) such that u(t) → γ 1 as t → −∞ and u(t) → γ 2 as t → ∞ where γ 1γ 2 are zeros of f. We study the existence of heteroclinic orbits under various assumptions on the nonlinear function f and their bifurcations as c is varied. Our arguments are geometric in nature and so we make only minimal smoothness assumptions. We only assume that f is continuous and that the equation has a unique solution to the initial value problem. Under these weaker smoothness conditions we reprove the classical result that for large c there is a unique positive heteroclinic orbit from 0 to 1 when f(0) = f(1) = 0 and f(u) > 0 for 0 < u < 1. When there are more zeros of f, there is the possibility of bifurcations of the heteroclinic orbit as c varies. We give a detailed analysis of the bifurcation of the heteroclinic orbits when f is zero at the five points −1 < −θ < 0 < θ < 1 and f is odd. The heteroclinic orbit that tends to 1 as t → ∞ starts at one of the three zeros, −θ, 0, θ as t → −∞. It hops back and forth among these three zeros an infinite number of times in a predictable sequence as c is varied.  相似文献   

19.
We find conditions for the unique solvability of the problem u xy (x, y) = f(x, y, u(x, y), (D 0 r u)(x, y)), u(x, 0) = u(0, y) = 0, x ∈ [0, a], y ∈ [0, b], where (D 0 r u)(x, y) is the mixed Riemann-Liouville derivative of order r = (r 1, r 2), 0 < r 1, r 2 < 1, in the class of functions that have the continuous derivatives u xy (x, y) and (D 0 r u)(x, y). We propose a numerical method for solving this problem and prove the convergence of the method. __________ Translated from Neliniini Kolyvannya, Vol. 8, No. 4, pp. 456–467, October–December, 2005.  相似文献   

20.
Suppose that the family of evolution equationsdu/dt+Au+f N (u)=0 possesses inertial manifolds of the same dimension for a sequence of nonlinear termsf N withf N f in the C0 norm. Conditions are found to ensure that the limiting equationdu/dt+Au+f(u)=0 also possesses an inertial manifold. There are two cases. The first, where the manifolds for the family have a bounded Lipschitz constant, is straightforward and leads to an interesting result on inertial manifolds for Bubnov-Galerkin approximations. When the Lipschitz constant is unbounded, it is still possible to prove the existence of an exponential attractor of finite Hausdorff dimension for the limiting equation. This more general result is applied to a problem in approximate inertial manifold theory discussed by Sell (1993).For Paul Glendinning, with thanks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号