首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
研制了高功率超宽带脉冲辐射实验装置。该装置主要由脉冲充电电源、超宽带脉冲产生装置、超宽带脉冲发射天线三部分组成。达到的主要指标为:脉冲电源输出电压600 kV、重复频率100 Hz;脉冲压缩输出峰值功率约10 GW、脉宽1.2 ns;在辐射天线轴上220 m处,辐射峰值电场16.1 kV/m、等效辐射功率0.42×1012 W;辐射场E面方向图半功率宽度为8°,H面方向图半功率宽度为9°。  相似文献   

2.
对高功率超宽带脉冲辐射实验装置的理论分析、工程设计及实验等分别进行了介绍。高功率超宽带脉冲辐射实验装置主要由脉冲充电电源、超宽带脉冲产生装置及超宽带脉冲发射天线三部分组成。脉冲充电电源为脉冲产生装置提供充足的前级能源;超宽带脉冲产生装置包括高压储能电容、高压开关、充电电感、低阻脉冲形成线、亚纳秒开关和高功率负载等部分;超宽带脉冲发射天线包括阻抗变换、传输线、同轴到平板过渡段、TEM喇叭馈源、透镜及密封腔、4.5m抛物面等部分。  相似文献   

3.
线框馈电抛物反射面高功率电磁脉冲辐射天线   总被引:5,自引:3,他引:2       下载免费PDF全文
 研制了一种由高功率宽带模式转换结构、导电线框TEM喇叭馈电结构及抛物反射面构成的天线,用其辐射高功率亚纳秒电磁脉冲。时域测试表明,在半宽为700ps、峰值电压为200kV脉冲激励下,天线的主瓣宽度约为±3.8°,辐射效率约为37%。  相似文献   

4.
基于功率容量和口径匹配的考虑,设计了一种超宽带折线型TEM喇叭天线。相比传统恒阻抗TEM喇叭,主要改进在于采用了同轴到平板过渡的馈入结构,辐射极板改为两段折线形式。通过理论模拟和实验研究对两种天线的输入、辐射特性进行了比较和分析。结果表明:采用960 ps宽度的高斯脉冲激励,同轴平板过渡峰值功率传输效率达到85%;相比于恒阻抗喇叭,折线TEM喇叭辐射峰值电场提高30%,H面方向图主瓣宽度由80压缩至60,同时改善了700 MHz频带内的传输辐射特性,瞬态脉冲峰值功率容量达到15 GW。  相似文献   

5.
复合振子天线辐射特性的数值模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
 讨论了由电单极子和磁振子组合而成的复合振子天线结构和工作原理,用时域有限差分方法模拟了天线的辐射特性,计算了天线从同轴线的馈电效率,对于单极脉冲和双极脉冲馈源,馈电效率分别为65%和81%。给出了天线的电压驻波比、辐射近场和远场、能量方向图等。模拟结果表明:在H面内辐射方向图是轴线对称的,其形状是心型;在E面内,方向图关于轴线不对称,辐射最大值方向向上偏离大约15°。这种天线具有宽带特性和较高的馈电效率,适合于超宽带电磁脉冲辐射的天线阵列的应用。  相似文献   

6.
高功率超宽带同轴双锥天线的设计和实验   总被引:6,自引:2,他引:4       下载免费PDF全文
 用口径场的方法对有限长同轴双锥天线进行了分析和设计。同轴双锥天线能工作在电压±100kV、重复频率100Hz、单周期脉冲全底宽3.6ns和输出阻抗50Ω的超宽带脉冲辐射源上,辐射功率大于100MW;天线带宽150MHz~1GHz;输入阻抗50Ω。E平面和H平面平行极化半功率点全宽度分别为50°和360°;天线的功率效率约为65%。  相似文献   

7.
高功率半抛物面冲击脉冲辐射天线系统实验研究   总被引:3,自引:3,他引:0       下载免费PDF全文
 描述了研制的一种集高重复频率、高功率冲击脉冲源和半抛物面反射器冲击脉冲辐射天线为一体的新型超宽带辐射天线系统,内容包括天线理论分析、系统工程设计和实验。研制的紧凑型高功率半IRA实验系统,在轴上30m处电场达13kV/m。  相似文献   

8.
描述了研制的一种集高重复频率、高功率冲击脉冲源和半抛物面反射器冲击脉冲辐射天线为一体的新型超宽带辐射天线系统,内容包括天线理论分析、系统工程设计和实验。研制的紧凑型高功率半IRA实验系统,在轴上30m处电场达13kV/m。  相似文献   

9.
“天光一号”平滑化角多路系统的建立   总被引:2,自引:4,他引:2       下载免费PDF全文
 采用诱导空间非相干(FEISI)的平滑方法结合传递傅里叶面的技术,建立了一套平滑化六束角多路系统。该系统输出总能量158 J,能量稳定度约4%,输出脉冲宽度25 ns,靶面有效焦斑直径400 μm,焦斑均匀性1.6%,激光功率密度3.7×1012 W/cm2。  相似文献   

10.
 研制了一套新型宽谱电磁脉冲试验系统,该系统采用全电感隔离型重复频率Marx发生器产生高压冲击脉冲,经双极脉冲形成线馈入宽带天线进行宽谱辐射。介绍了发生器工作原理和双极脉冲形成原理。实验结果表明:发生器输出脉冲电压500 kV,脉冲前沿20 ns,重复频率20 Hz,宽谱辐射因子195 kV,辐射中心频率200 MHz,频谱宽度37%。该试验系统结构紧凑、操作灵活,并具有方位辐射方向360°旋转和运程控制等功能。  相似文献   

11.
小型超宽谱高功率微波辐射系统由Tesla型100 kV级ns脉冲源、Peaking-Chopping型亚纳秒气体开关及TEM喇叭天线构成。系统重复运行频率100 Hz,辐射因子rEp值75 kV,主轴辐射场中心频率520 MHz,-3 dB频谱范围230~810 MHz。系统集成于一便携箱内,体积为80 cm50 cm26 cm,质量约45 kg。该系统结构紧凑,能够快速展开和撤收,可方便用于超宽谱高功率微波应用技术研究。  相似文献   

12.
小型超宽谱高功率微波辐射系统   总被引:2,自引:2,他引:0       下载免费PDF全文
小型超宽谱高功率微波辐射系统由Tesla型100 kV级ns脉冲源、Peaking-Chopping型亚纳秒气体开关及TEM喇叭天线构成。系统重复运行频率100 Hz,辐射因子rEp值75 kV,主轴辐射场中心频率520 MHz,-3 dB频谱范围230~810 MHz。系统集成于一便携箱内,体积为80 cm50 cm26 cm,质量约45 kg。该系统结构紧凑,能够快速展开和撤收,可方便用于超宽谱高功率微波应用技术研究。  相似文献   

13.
采用1/4波长开关同轴谐振器技术路线,开展了高功率宽谱微波产生及耦合输出技术研究。设计振荡器工作在200 MHz,低阻抗1/4波长同轴传输线与传输线一端的环形多通道气体火花开关构成谐振器,耦合器由集中电容和分布电感构成,实现宽谱微波的能量提取。通过数值模拟研究了振荡器的振荡及耦合输出过程,分析了高压脉冲馈入方式、谐振器阻抗特性及开关齿槽结构对环形开关导通特性的影响。数值模拟和实验结果证明,采用直馈方式、高阻结构和齿槽结构有利于形成开关多通道导通,并提高开关导通的稳定性。在输出电压为500 kV的Marx脉冲功率源平台上构建了高功率宽谱微波产生实验装置,实验得到的宽谱微波振荡频率为195 MHz,辐射因子约150 kV,频谱带宽约30%。  相似文献   

14.
高功率宽谱开关振荡器   总被引:2,自引:2,他引:0       下载免费PDF全文
采用1/4波长开关同轴谐振器技术路线,开展了高功率宽谱微波产生及耦合输出技术研究。设计振荡器工作在200 MHz,低阻抗1/4波长同轴传输线与传输线一端的环形多通道气体火花开关构成谐振器,耦合器由集中电容和分布电感构成,实现宽谱微波的能量提取。通过数值模拟研究了振荡器的振荡及耦合输出过程,分析了高压脉冲馈入方式、谐振器阻抗特性及开关齿槽结构对环形开关导通特性的影响。数值模拟和实验结果证明,采用直馈方式、高阻结构和齿槽结构有利于形成开关多通道导通,并提高开关导通的稳定性。在输出电压为500 kV的Marx脉冲功率源平台上构建了高功率宽谱微波产生实验装置,实验得到的宽谱微波振荡频率为195 MHz,辐射因子约150 kV,频谱带宽约30%。  相似文献   

15.
可调间隙亚纳秒气体开关的研制   总被引:10,自引:8,他引:2       下载免费PDF全文
 设计了一种高工作电压、高重复频率的亚纳秒气体开关,该开关由Peaking间隙和Chopping间隙组成,可以将纳秒信号转化为亚纳秒脉冲。开关腔外有两组调节旋钮,分别用来调节Peaking间隙和Chopping间隙,使输入脉冲的前后沿能同时得到锐化。对设计的开关进行的实验研究结果表明:在系统重频5 Hz运行时,开关能稳定输出电压278 kV、脉宽620 ps的脉冲;在系统重频100 Hz运行时,开关能稳定输出电压270 kV、脉宽700 ps的脉冲。  相似文献   

16.
设计了一种高功率共面馈电脉冲辐射天线。该天线馈源采用双组电大尺寸共面极板馈臂,将馈电点置于焦点处,与直径2.1 m的抛物反射面相配合,实现超宽谱短脉冲的有效定向辐射。提出了一种由同轴输入到4端输出的高功率馈电巴伦,解决了高功率情况下同轴线到4馈臂共面馈电问题。对所设计天线进行测试实验,结果表明:在馈电脉冲宽度为450 ps、峰值电压为142 kV时,辐射因子达到800 kV。  相似文献   

17.
设计了一种高功率共面馈电脉冲辐射天线。该天线馈源采用双组电大尺寸共面极板馈臂,将馈电点置于焦点处,与直径2.1 m的抛物反射面相配合,实现超宽谱短脉冲的有效定向辐射。提出了一种由同轴输入到4端输出的高功率馈电巴伦,解决了高功率情况下同轴线到4馈臂共面馈电问题。对所设计天线进行测试实验,结果表明:在馈电脉冲宽度为450 ps、峰值电压为142 kV时,辐射因子达到800 kV。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号