首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of the three melting peaks typical of a propylene–ethylene random copolymer (with 5.1 wt % ethylene) crystallized between 110 and 140 °C, the two higher peaks result from primary and secondary isothermal crystallization, whereas the material crystallized on cooling gives the lowest peak. In contrast to polypropylene homopolymers, which show strong morphological changes developing from the center of a spherulite, copolymer specimens are uniformly crosshatched. The highest melting peak is related to an open crosshatched framework of primary lamellae, and the next lower peak is related to later forming subsidiary lamellae filling the intervening space. The origin and nature of these double peaks are discussed in terms of the fractional crystallization and the ensuing constraints placed on isothermal lamellar thickening as a result of the exclusion of the comonomer from the polypropylene lattice. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3318–3332, 2004  相似文献   

2.
We investigated the crystallization growth of isotactic polypropylene under carbon dioxide (CO2) at various CO2 pressures and temperatures by in situ observation with a digital high‐fidelity microscope and a specially designed high‐pressure visualized cell. The fibrils within the spherulite were distorted and branched by crystallization under CO2 at pressures higher than 2 MPa, and this suggested the exclusion of CO2 from the growth front of the fibrils. The spherulite growth rate (G) at 140 °C increased with the CO2 pressure, attained a maximum value around 0.3 MPa, and then decreased. Above 6 MPa, it became slower than that under air at the ambient pressure. An analysis of the crystallization kinetics by the Hoffman–Lauritzen theory revealed that the pressure dependence of G could be ascribed to the change in the transportation rate of crystallizable molecules (βg) with pressure; that is, βg increased and then decreased with pressure. The increase in βg at a low pressure was caused by the plasticizing effect of CO2, whereas the decrease in βg at a high pressure was due to the exclusion of CO2 from the crystal growth front. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1565–1572, 2004  相似文献   

3.
We investigated the crystalline morphology of isotactic polypropylene obtained by melt crystallization under carbon dioxide (CO2) at various pressures. Spherulites consisting of regularly arranged fibrils without subsidiary lamellae were obtained by crystallization under CO2 below 2 MPa, whereas large spherulites consisting of irregularly arranged fibrils with subsidiary lamellae were obtained under ambient pressure. Distorted domain crystals with uniform optical anisotropy consisting of α‐form were found to be obtained under CO2 above 2 MPa, and needle crystals consisting of γ‐form were obtained above 12 MPa. Transmission electron micrographs showed that straight and thick lamellae are regularly arranged in both the distorted domain crystals and the needle crystals. The uniformly thick lamellae were confirmed by differential scanning calorimetry thermograms; that is, the melting temperature is higher and the melting peak is sharper than those obtained under ambient pressure. Such characteristic crystalline morphologies obtained under CO2 may be attributed to local ordering in the melt state. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2738–2746, 2004  相似文献   

4.
The melting of highly tactic i‐polypropylene occurs in two stages even for crystallization at 145 °C, a temperature at which reorganization during scanning is negligible. A comparison of two such polypropylenes, one nucleated and the other not nucleated, together with fractions from the latter, has been made with electron microscopy following permanganic etching, in addition to differential scanning calorimetry. This has allowed the two melting stages to be assigned to two components of the lamellar morphology, with progressive changes in both occurring with increasing radial distance within a spherulite. The highest melting temperature is for dominant radial lamellae far from a spherulite center. The lowest melting regions are the evenly crosshatched spherulite centers and a narrow peripheral band. Lower melting is attributed to the suppression of isothermal lamellar thickening paralleling recent direct demonstrations in polyethylene. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2342–2354, 2003  相似文献   

5.
Dynamically cured polypropylene (PP)/epoxy blends compatibilized with maleic anhydride grafted PP were prepared by the curing of an epoxy resin during melt mixing with molten PP. The morphology and crystallization behavior of dynamically cured PP/epoxy blends were studied with scanning electron microscopy, differential scanning calorimetry, and polarized optical microscopy. Dynamically cured PP/epoxy blends, with the structure of epoxy particles finely dispersed in the PP matrix, were obtained, and the average diameter of the particles slightly increased with increasing epoxy resin content. In a study of the nonisothermal crystallization of PP and PP/epoxy blends, crystallization parameter analysis showed that epoxy particles could act as effective nucleating agents, accelerating the crystallization of the PP component in the PP/epoxy blends. The isothermal crystallization kinetics of PP and dynamically cured PP/epoxy blends were described by the Avrami equation. The results showed that the Avrami exponent of PP in the blends was higher than that of PP, and the crystallization rate was faster than that of PP. However, the crystallization rate decreased when the epoxy resin content was greater than 20 wt %. The crystallization thermodynamics of PP and dynamically cured PP/epoxy blends were studied according to the Hoffman theory. The chain folding energy for PP crystallization in dynamically cured PP/epoxy blends decreased with increasing epoxy resin content, and the minimum of the chain folding energy was observed at a 20 wt % epoxy resin content. The size of the PP spherulites in the blends was obviously smaller than that of PP. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1181–1191, 2004  相似文献   

6.
One of the most important claims for the plasma technique as a surface treatment is that it modifies only a few atomic layers of materials. However, with polymers, this assumption must be carefully verified to keep the bulk mechanical properties constant. Besides the oxidation of the film, with specific plasma conditions such as high power and duration, the polypropylene film structure is also modified in the bulk through vacuum ultraviolet absorption and thermal relaxation. This change is associated with smectic- and amorphous-phase transformation into an α-monoclinic phase, with a rapid rate for the smectic transformation and a slower rate for the amorphous transformation. At the same time, the crystallite size increases, and the polypropylene film texture is planar and moderated (1.7 mrd at the maximum of the distribution, with a discharge power of 100 W and a treatment duration of 10 min). © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2007–2013, 2004  相似文献   

7.
The nonisothermal crystallization kinetics of poly(propylene) (PP) and poly(propylene)/organic‐montmorillonite (PP/Mont) nanocomposite were investigated by differential scanning calorimetry (DSC) with various cooling rates. The Avrami analysis modified by previous research was used to describe the nonisothermal crystallization process of PP and PP/Mont nanocomposite very well. The values of half‐time and Zc showed that the crystallization rate increased with increasing cooling rates for both PP and PP/Mont nanocomposite, but the crystallization rate of PP/Mont nanocomposite was faster than that of PP at a given cooling rate. The activation energies were estimated by the Kissinger method, and the values were 189.4 and 155.7 kJ/mol for PP and PP/Mont nanocomposite, respectively. PP/Mont nanocomposite could be easily fabricated as original PP, although the addition of organomontmorillonite might accelerate the overall nonisothermal crystallization process. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 408–414, 2002; DOI 10.1002/polb.10101  相似文献   

8.
The use of metal phenylphosphonates as efficient nucleating agents (NAs) for isotactic polypropylene (iPP) is reported and a possible structural correlation to the nucleation efficiency is studied. First, three kinds of metal phenylphosphonates are synthesized via reflux method: Ca(C6H5PO3)?2H2O (CaPPA), Ca(C6H5PO3H)2 (CaPPA2), and Al(HO3PC6H5)(O3PC6H5)?H2O (AlPPA2). Then, the nonisothermal crystallization behaviors, mechanical, and optical properties of iPP composites are investigated. Compared to CaPPA2 and AlPPA2, CaPPA exhibits more effective heterogeneous nucleation effect during iPP crystallization. Furthermore, the nucleation efficiency of CaPPA is similar to industrial standard NAs NA‐21 and NA‐11. With the addition of 0.1 wt % CaPPA, the crystallization temperature is enhanced and the parameter F(T) of Mo method is decreased appreciably. Moreover, the flexural modulus, impact strength, and haze values of iPP composites are improved remarkably by introducing CaPPA. The CH/π interaction between polymer and aromatic cleft of CaPPA is considered to facilitate the attachment of iPP chains and subsequent nucleation and crystallization, which is verified by the viscoelastic properties of pure iPP and composites. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 161–173  相似文献   

9.
The quiescent crystallization of several polypropylenes (PPs) was examined using Differential Scanning Calorimetry (DSC) and Polarized Optical Microscopy (POM). The half‐times of crystallization were obtained from the DSC thermographs employing the Avrami/Nakamura equation to fit and predict crystallization kinetics under isothermal and nonisothermal conditions. The induction times under nonisothermal conditions were estimated from isothermal crystallization data and used in conjunction with the Nakamura model in order to capture the crystallization behavior of the studied PPs. The Avrami/Nakamura model is found to fit and predict the nonisothermal crystallization data of the various PPs well over a range of cooling rates supporting its use in the simulation of polymer processes of industrial relevance. POM was used in line with parallel plate rheometry (Anton Paar, MCR 502) under no flow conditions to study the shape and growth rate of crystals of various PP resins at different temperatures or cooling rates. The growth rate of crystals is impeded exponentially with increase of temperature. The various PP resins of different molecular architecture have shown different nucleation and growth rate characteristics behavior under similar processing conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1259–1275  相似文献   

10.
Crystallization studies at quiescent and shear states in isotactic polypropylene (iPP) containing nanostructured polyhedral oligomeric silsesquioxane (POSS) molecules were performed with in situ small‐angle X‐ray scattering (SAXS) and differential scanning calorimetry (DSC). DSC was used to characterize the quiescent crystallization behavior. It was observed that the addition of POSS molecules increased the crystallization rate of iPP under both isothermal and nonisothermal conditions, which suggests that POSS crystals act as nucleating agents. Furthermore, the crystallization rate was significantly reduced at a POSS concentration of 30 wt %, which suggests a retarded growth mechanism due to the molecular dispersion of POSS in the matrix. In situ SAXS was used to study the behavior of shear‐induced crystallization at temperatures of 140, 145, and 150 °C in samples with POSS concentrations of 10, 20, and 30 wt %. The SAXS patterns showed scattering maxima along the shear direction, which corresponded to a lamellar structure developed perpendicularly to the flow direction. The crystallization half‐time was calculated from the total scattered intensity of the SAXS image. The oriented fraction, defined as the fraction of scattered intensity from the oriented component to the total scattered intensity, was also calculated. The addition of POSS significantly increased the crystallization rate during shear compared with the rate for the neat polymer without POSS. We postulate that although POSS crystals have a limited role in shear‐induced crystallization, molecularly dispersed POSS molecules behave as weak crosslinkers in polymer melts and increase the relaxation time of iPP chains after shear. Therefore, the overall orientation of the polymer chains is improved and a faster crystallization rate is obtained with the addition of POSS. Moreover, higher POSS concentrations resulted in faster crystallization rates during shear. The addition of POSS decreased the average long‐period value of crystallized iPP after shear, which indicates that iPP nuclei are probably initiated in large numbers near molecularly dispersed POSS molecules. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2727–2739, 2001  相似文献   

11.
The isothermal crystallization behavior and the structure and morphology of isotactic poly(propylene) (iPP) and iPP/hydrogenated hydrocarbon resin (HR) 90/10 blend were analyzed. To cover the entire temperature range, isothermal crystallizations were studied using superfast calorimetry at a high cooling rate in the range 0 to 110 °C, and by conventional DSC at a low cooling rate in the range 120 to 140 °C. Structural and morphological changes due to the different thermal treatments were also analyzed. The complete crystallization curve ranging from Tg to Tm showed bimodal crystallization behaviors for both iPP and iPP/HR 90/10 blend. This result is explained by taking into consideration the polymorph properties of iPP. It is in fact assumed that the curve from Tg to 60 °C referred mainly to the crystallization kinetics of the iPP mesomorphic form by homogeneous nucleation, whereas the curve from 60 °C to Tm mainly represented the crystallization kinetic curve for the monoclinic α form by heterogeneous nucleation. This hypothesis is confirmed by the analysis of the structures obtained using wide angle X‐ray experiments. Moreover, the addition of HR to iPP causes a drastic reduction in the crystallization rate of iPP in both regions due to the diluent effect of the miscible resin.

  相似文献   


12.
Summary: A series of poly(propylenes) (PPs) were prepared by slurry polymerization using a MgCl2-supported transition metal catalyst. Two different external donors (EDs) were used: diphenyl dimethoxysilane (DPDMS) and methylphenyl dimethoxysilane (MPDMS). The molecular weight (MW) of the PPs was controlled using molecular hydrogen that was used as a transfer agent. To obtain materials with differing molecular weight and similar tacticities, polymers were fractionated with prep-TREF. DSC analyses of blends of TREF fractions showed that the crystallization behaviour of the polymer blends are strongly affected by the configuration (tacticity) and MW of the PP.  相似文献   

13.
The isothermal crystallization of poly(propylene) and poly(ethylene terephthalate) was investigated with differential scanning calorimetry and optical microscopy. It was found that the induction time depends on the cooling rate to a constant temperature. The isothermal crystallization of the investigated polymers is a complex process and cannot be adequately described by the simple Avrami equation with time‐independent parameters. The results indicate that crystallization is composed of several nucleation mechanisms. The homogeneous nucleation occurring from thermal fluctuations is preceded by the nucleation on not completely melted crystalline residues that can become stable by an athermal mechanism as well as nucleation on heterogeneities. The nucleation rate depends on time, with the maximum shortly after the start of crystallization attributed to nucleation on crystalline residues (possible athermal nucleation) and on heterogeneities. However, the spherulitic growth rate and the exponent n do not change with the time of crystallization. The time dependence of the crystallization rate corresponds to the changes in the nucleation rate with time. The steady‐state crystallization rate in thermal nucleation is lower than the rate determined in a classical way from the half‐time of crystallization. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1835–1849, 2002  相似文献   

14.
The effect of CO2 on the nonisothermal crystallization of isotactic polypropylene (iPP) was studied with high‐pressure differential scanning calorimetry at cooling rates of 0.2–5 °C/min. CO2 significantly delayed the melt crystallization of iPP, and both the crystallization temperature and the heat of crystallization decreased with increasing CO2 pressure. The crystallization rate of iPP, as characterized by the half‐time, was also prolonged by the presence of CO2. With a modified Ozawa model developed by Seo, the Avrami crystallization exponent n of iPP was calculated. This value was depressed by the addition of CO2 and was strongly dependent on the CO2 pressure at low cooling rates. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1518–1525, 2003  相似文献   

15.
采用DSC对环氧丙烷聚醚三元醇/左旋聚乳酸三枝链嵌段共聚物(PPO-b-PLLA)的熔体结晶行为进行了研究. 在388~407 K范围内, 分别采用Avrami方程和Arrhenius方程进行了结晶动力学计算. Avrami指数n值约为2.2, 表明共聚物以二维生长方式进行晶体生长. 基于LH结晶理论, 对三枝链嵌段共聚物的结晶机理进行了探讨. 实验发现该体系共聚物的Regime II和Regime III转变温度随着n(PO)∶n(LA)的增大而变化, Kg (III)/Kg (II)=2.0~2.2, 与LH理论预期值吻合. 实验结果表明三枝链的PPO链段对PLLA链段的结晶有很大影响, 使其成核较均聚物困难. 链折叠自由能σe和链折叠功q均高于PLLA的值.  相似文献   

16.
Isothermal crystallization kinetics of a new sequential poly(ester amide) derived from glycine, 1,4‐butanediol, and adipic acid was investigated with differential scanning calorimetry and optical microscopy. The Avrami analysis was performed to obtain the kinetic parameters of primary and secondary crystallization. The experimental data indicate a heterogeneous nucleation with spherical growth geometry for the primary crystallization, whereas a linear growth within formed spherulites is characteristic of the last crystallization stages. The Lauritzen–Hoffman analysis was also undertaken to determine the different crystallization regimes, having estimated the corresponding nucleation constants. Temperature dependence of the normalized crystallization‐rate constants was tested with different theoretical equations. These allow an estimation of a temperature close to 90 °C for the maximum crystallization rate. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 903–912, 2003  相似文献   

17.
Quasi-isothermal temperature modulated DSC (TMDSC) were performed during crystallization to determine heat capacity as function of time and frequency. Non-reversible and reversible phenomena in the crystallization region of polymers were distinguished. TMDSC yields new information about the dynamics of local processes at the surface of polymer crystals, like reversible melting. The fraction of material involved in reversible melting, which is established during main crystallization, keeps constant during secondary crystallization for polycaprolactone (PCL). This shows that also after long crystallization times the surfaces of the individual crystallites are in equilibrium with the surrounding melt. Simply speaking, polymer crystals are living crystals. A strong frequency dependence of complex heat capacity can be observed during and after crystallization of polymers.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

18.
The effects of clay on polymorphism of polypropylene (PP) in PP/clay nanocomposites (PPCNs) under various thermomechanical conditions were studied. In extruded PP and PPCN pellet samples, only α-phase crystallites existed, as they were prepared by rapidly cooling the melt extrudates to room temperature. Under compression, β-phase crystallites can develop in neat PP under various thermal conditions, of which isothermal crystallizing at 120 °C gave the highest content of β-phase crystallites. In contrast, no β-phase crystallite was detected in the PPCN samples prepared under the same conditions. This indicated that clay significantly inhibits the formation of β-phase crystallites. The likely reason is that the presence of clay in PPCNs greatly sped up the crystallization process of the α phase, whereas it had an insignificant effect on the crystallization rates of the β phase. The results also showed that clay may slightly promote the formation of γ-phase PP crystallites in PPCNs. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1810–1816, 2004  相似文献   

19.
Morphology development during isothermal crystallization in equal molecular weight isotactic polypropylene (iPP), syndiotactic polypropylene (sPP), and iPP/sPP blends was studied with time‐resolved simultaneous small‐angle X‐ray scattering (SAXS) and wide‐angle X‐ray diffraction (WAXD) with synchrotron radiation. The sPP melting point is 15–20 °C below that of the iPP component, and sPP multiple melting is not affected by blending for 50–100 wt % sPP compositions. SAXS and WAXD (at 115 and 137.5 °C) show that sPP crystallizes more slowly than iPP. The sPP long spacing is larger than that of iPP at both crystallization temperatures, exhibits a broader distribution, and changes to a greater extent during crystallization. Differential scanning calorimetry (DSC) cooling and SAXS/WAXD measurements show iPP crystallizing first and nearly to completion before sPP in a 50:50 iPP/sPP blend. At 115 °C, iPP crystals nucleate sPP in a 50:50 blend and modify the sPP lamellar spacing. The nucleation does not overcome the large difference in the iPP and sPP rates at 137.5 °C. Before sPP crystallization in a 50:50 blend (115 °C), the iPP long spacing is not affected by molten sPP. The iPP long spacing is slightly expanded by molten sPP, and the WAXD induction time is delayed at 137.5 °C. The observed iPP long spacing in the presence of molten sPP is consistent with previously reported results for iPP/atactic polypropylene (aPP) blends of similar molecular weight. Quantitative differences between the two types of blends are consistent with previously reported thermodynamic rankings. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1876–1888, 2001  相似文献   

20.
The crystallization of polypropylene with different density of macromolecular entanglements was studied in isothermal and non‐isothermal conditions. The growth rate of spherulites increased with reduced concentration of entanglements. Reduction of entanglements shifted the temperature of transition between Regimes II and III, which means that more regular growth of crystals was possible at lower temperature. The range of temperatures at which polypropylene cavitated in regions of melt occluded by spherulites was limited to 137–139°C, with weak dependence on entanglements density. DSC studies showed that isothermal crystallization is faster in less entangled polymers, however the crystallinity degree and long period of structure (by SAXS) were similar for studied materials. When the crystallization was completed during fast cooling, the differences between individual samples were more significant. The partial disentangling, overcoming some limitation for movements of macromolecules, made possible easier crystallization, even at low temperature of Regime III. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 748–756  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号