首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hou WC  Chen HJ  Chen TE  Lin YH 《Electrophoresis》1999,20(3):486-490
A general method for detecting protease activities on acrylamide or agarose gels after sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) using specific aminoacyl p-nitroanilide (NA) or peptidyl NA as substrate is described. This method is extended from the spectrophotometric assay of p-nitroaniline, which is a chromogenic product liberated by protease action on aminoacyl NA or peptidyl NA. The acrylamide gel containing protein bands was dipped directly into a solution which contained specific synthetic aminoacyl NA or peptidyl NA as a substrate or had been overlaid with an agarose gel containing the same substrate. The p-nitroaniline released on the acrylamide or agarose gel by the specific protease was diazotized with sodium nitrite and then coupled to N-(1-naphthyl)-ethylenediamine to produce distinct activity band(s). The substrates used for protease activity staining on gels were identical to those used for spectrophotometric assays. Some applications are described.  相似文献   

2.
以配位聚合物凝胶为模板, 构筑均一的聚吡咯纳米线网络, 聚合后经简单处理除去模板, 得到性能优异的聚吡咯凝胶. 结果表明, 模板法合成的聚吡咯凝胶为由均一纳米线组成的三维网络结构, 具有良好的力学性能、 较大的比表面积及优异的电化学特性, 在0.28 A/g电流密度下, 比电容可达450 F/g, 在2.8 A/g电流密度下充放电1000次, 比电容仍可保持88.6%. 聚吡咯纳米线网络凝胶经葡萄糖氧化酶负载后得到柔性传感电极, 对低浓度(0.2 mmol/L)的葡萄糖具有快速响应性能, 有望用于超级电容器及生物电化学传感器等领域.  相似文献   

3.
A new class of polymer hydrogels, nanocomposite hydrogels (NC gels), consisting of a unique organic (polymer)/inorganic (clay) network structure, was synthesized by in situ free-radical polymerization in the presence of exfoliated clay nanoparticles in an aqueous system. The resulting NC gels overcame most of the disadvantages associated with chemically cross-linked hydrogels, such as mechanical fragility, structural heterogeneity, and slow de-swelling rate. By using thermo-sensitive poly(N-isopropylacrylamide) (PNIPA) as a constituent polymer, NC gels with remarkable mechanical, optical, and swelling properties as well as thermo-sensitivity were obtained. The various properties of NC gels, such as transparency, gel volume, cell culturing, and surface friction changed significantly in response to the temperature and surrounding conditions. All the excellent properties and new stimuli-responsive characteristics of NC gels are attributed to the unique PNIPA/clay network structure. The thermo-sensitivities and the transition temperature can largely be controlled by varying the clay content and by the addition of solutes.  相似文献   

4.
Anisotropically deforming objects have attracted considerable interest for use in molecular machines and artificial muscles. Herein, we focus on a new approach based on the crystal crosslinking of organic ligands in a pillared‐layer metal–organic framework (PLMOF). The approach involves the transformation from crosslinked PLMOF to polymer gels through hydrolysis of the coordination bonds between the organic ligands and metal ions, giving a network polymer that exhibits anisotropic swelling. The anisotropic monomer arrangement in the PLMOF underwent axis‐dependent crosslinking to yield anisotropically swelling gels. Therefore, the crystal crosslinking of MOFs should be a useful method for creating actuators with designable deformation properties.  相似文献   

5.
We describe phase separations seen in the poly (γ-benzyl α, L-glutamate) (PBLG)/benzyl alcohol (BA) system. At temperatures below about 60°C, this system gels. Possible explanations of the system's rigidity include both crystallisation and spinodal decomposition. Recent work on atactic polystyrene (a-PS) gels has suggested these are the result of a phase separation arrested by vitrification. An analogy between a-PS and PBLG gels is suggested whereby crystallisation (in the latter) plays the rǒle of vitrification in the former.  相似文献   

6.
The preparation method and the molecular structure of a composite material consisting of a ternary system polymer/bicoppercomplex/solvent are presented. The properties of each binary system are exposed first. The polymer solutions produce thermoreversible gels while the bicopper organic complex forms a randomly-dispersed, self-assembling structure in organic solvents. It is shown that, in a common solvent, the bicopper complex acts as a nucleation agent for the gelation of the polymer (heterogeneous nucleation). As a result, bicopper complex filaments are encapsulated in a polymer matrix.  相似文献   

7.
Most alignment media for the residual dipolar coupling (RDC) based molecular structure determination of small organic compounds consist of rod‐like polymers dissolved in organic solvents or of swollen cross‐linked polymer gels. Thus far, the synthesis of polymer‐based alignment media has been a challenging process, which is often followed by a time‐consuming sample preparation. We herein propose the use of non‐polymeric alignment media based on benzenetricarboxamides (BTAs), which self‐assemble into rod‐like supramolecules. Our newly found supramolecular lyotropic liquid crystals (LLCs) are studied in terms of their LLC properties and their suitability as alignment media in NMR spectroscopy. Scalable enantiodifferentiating properties are introduced through a sergeant‐and‐soldier principle by blending achiral with chiral substituted BTAs.  相似文献   

8.
Polyhedral oligomeric silsesquioxane hybrid temperature and pH double‐responsive hydrogels with organic–inorganic co‐crosslinked networks are synthesized by in situ, free‐radical polymerization of N‐isopropylacrylamide and dimethylaminoethyl methacrylate in the presence of both organic crosslinker N,N′‐methylenebis(acrylamide) (BIS) and inorganic crosslinker octavinyl polyhedral oligomeric silsesquioxane (OvPOSS) in tetrahydrofuran media. The resulting hydrogels (OR‐OvP gels) display obvious temperature and pH double responsiveness, OvPOSS particles dispersed in polymer make a dominant effect on the properties of gels. With the increase of OvPOSS, the aggregation of particles on nano‐ or microscale happens and causes a considerable change on the properties of gels, such as the lower critical solution temperature and better compression strength. Specially, the interconnected microporous structure of gels ascribed to the microphase separation results in faster deswelling rate, which makes the gel become attractive. Besides, the crosslink by BIS intensifies the heterogeneity of gels significantly, which could also be used to adjust the properties of gels. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1494–1504  相似文献   

9.
Many human diseases occur due to the over or under-expression of genes which can be corrected either by silencing or over-expression, respectively by transforming with specific nucleic acid (NA). NA transformation for medical purposes to alter the cellular gene expression is challenging because NA cannot cross efficiently the cellular biomembrane. One option, the viral vectors, is risky for patients and, the non-viral vectors have lower transformation efficiency. From the past few years, nanoparticles (NPs) are being studied extensively for their use as a vector to deliver NA. They are of a sub-micron size, have a large surface area, rapid absorption ability and can reach inside of the cells. These properties make them a suitable gene carrier. NPs types - organic, inorganic, organic/inorganic hybrid and polymeric NPs, having different properties that can be used to deliver the NA. They possess various properties like biocompatibility, targeted delivery of gene, controlled release of NA which makes them suitable for different uses. In this review, we are describing and comparing various methods to synthesize various kinds of NPs and how they can be conjugated with NA. A series of modifications in NPs to form the polyplex are also discussed along with the varying outcomes in terms of changes in the gene expression and its cytotoxicity towards different cell lines. This review is helpful for nano-scientists to decide which method to be followed for a specific need via controlling gene expression.  相似文献   

10.
New polymer organogelators, which are composed of poly(ethylene glycol), poly(propylene glycol), and poly(dimethylsiloxane)s as a polymer segment and L ‐isoleucine and L ‐valine derivatives as a gelation‐causing segment, were synthesized, and their organogelation properties were examined in organic solvents and oils. These polymer organogelators formed organogels in many organic solvents and oils, and their gels were thermally stable and had a high mechanical strength. Furthermore, the effects of the polymer backbone on the organogelation is discussed using FTIR spectroscopy, field emission scanning electron microscope observation, and analysis of thermal stability and strength of the organogel. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 353–361, 2008  相似文献   

11.
Counterion‐ and solvent‐specific swelling behaviors were investigated for alkali‐metal poly(styrene sulfonate) (PSSM) gels having different degrees of sulfonation in aqueous organic solvent mixtures [water plus methanol, ethanol, 2‐propyl alcohol, t‐butyl alcohol, dimethyl sulfoxide (DMSO), acetone, acetonitrile, tetrahydrofuran, or dioxane]. With an increasing organic solvent concentration, most gel systems, except for DMSO, showed a volume phase transition. The transition abruptly occurred without significant deswelling in the lower solvent concentration region. Such swelling behavior contrasted with that of other common charged gel systems, including alkali‐metal polyacrylate (PAAM) gels, which showed gel collapse after gradual deswelling with an increasing organic solvent concentration. The dielectric constant at the critical transition point (Dcr) for most mixed solvent systems decreased in the order of PSSK ≥ PSSCs ≥ PSSNa > PSSLi; that is, larger counterion systems were favorable for the transition. The counterion specificity also contrasted with our previous results for PAAM gels: PAANa > PAAK > PAALi ~ PAACs. On the other hand, the solvent specificity for the PSSM gels was similar to that for the PAAM gels; the higher the dielectric constant was of the organic solvent, the higher the Dcr value was at which the transition occurred. These specificities were examined on the basis of the solvation properties of the counterions and polymer charged groups and the solvent properties such as the Gutmann–Mayer donor number and acceptor number. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1166–1175, 2007  相似文献   

12.
Polymer gels have received a great deal of attention not only from scientific interest but also for their practical applications. Recently, low molecular-weight organic gels have also been receiving growing attention. However, their have been few studies of low molecular-weight organic gels in contrast to extensive studies of polymer gels. In order to develop a novel class of low-molecular-weight organic gels and to gain an insight into the relationship between molecular structures of gel-form…  相似文献   

13.
This paper is intended to review some aspects of fibrillar networks by comparing polymer thermoreversible gels and organogels, the latter being obtained through the self-assembling of small organic molecules. The morphology, the rheological properties and the gelation mechanisms are particularly examined. The possibility of preparing hybrid materials is discussed.  相似文献   

14.
Artificially engineered proteins and synthetic polypeptides have attracted widespread interest as building blocks for polymer hydrogels. The biophysical properties of the proteins, such as molecular recognition abilities, folded chain structures, and sequence-dependent thermodynamic behavior, enable advances in functional, responsive, and tunable gels. This review discusses the design of polymer hydrogels that incorporate protein domains, highlighting new challenges in polymer physics that are presented by this emerging class of materials. Five types of engineered protein hydrogels are discussed: (a) physically associating protein polymer gels, (b) amorphous artificially engineered protein networks, (c) engineered proteins with crystalline domains, (d) stretchable protein tertiary structures in gels, and (e) protein gels with biological recognition properties. The physics of the protein component and the physical properties of the resulting hydrogels are summarized, illustrating how advances in understanding these systems are leading to exciting novel biofunctional hydrogels. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

15.
Homogeneous gels represent a new type of (electro)chromatographic media possessing unique separation properties unmatched with any other chromatographic beds. It is important to emphasize that they principally differ from continuous beds, polymer rods (better known as monoliths), which are particulate separation media with pores permitting hydrodynamic flow through the columns. Monoliths, thus, are more similar to beds conventionally packed with beads, although the particles building up monolithic columns are usually smaller in size (few submicometers) and covalently linked together. Consequently, homogeneous gels deserve better the term "monoliths" having a non-particulate structure formed by crosslinked free polymer chains (according to a dictionary a monolith is a non-modularized column). The goals of this minireview are to clarify the position of homogeneous gels among the separation media (including polymer solutions), to explain and to exemplify their outstanding (electro)chromatographic properties. This review gives hopefully a complete list of references to homogeneous gels developed for capillary electrochromatography.  相似文献   

16.
万锕俊  谭连江 《化学进展》2012,(Z1):370-376
聚丙烯腈是用途最广泛的聚合物之一,其溶于适当溶剂中形成的聚丙烯腈溶液是制备聚丙烯腈纤维、渗透膜等高分子材料的原料。聚丙烯腈溶液的物理化学性质对所制备材料的性能有很大的影响。本文对高分子溶液的凝胶化和高分子凝胶的特点做了简要介绍,并介绍了聚丙烯腈及其凝胶的特点。根据高分子浓溶液体系的特点提出用于表征聚丙烯腈溶液凝胶化的主要方法。从浓度和温度对聚丙烯腈溶液凝胶化行为的影响、熟化和非溶剂对聚丙烯腈溶液凝胶化行为的影响、聚丙烯腈溶液凝胶化的热可逆性、聚丙烯腈溶液凝胶化的分形特征以及聚丙烯腈凝胶的交联机理这几个方面对已有聚丙烯腈溶液的凝胶化研究成果和最新进展进行了综述。最后对聚丙烯腈溶液凝胶化和聚丙烯腈凝胶的研究前景做了展望。  相似文献   

17.
The objective of this study is to provide a rheological characterization of binary hydroalcoholic gels made with Carbopol Ultrez 10 (U10) and Hyaluronic Acid (HA) as a function of polymer concentration: U10 (0.0-2.0% w/w) and HA (0.00-0.20% w/w), and to determine the influence of this combination on the thixotropic properties of the resulting binary systems. Interaction of the two polymers was measured using the Viscose Synergy Index (I(S)) and thixotropic analysis, which indicate the structural changes that take place in binary gels attributable to molecular interactions between the gelling agents. The maximum values for viscose synergy (I(S)=1.22-1.44) are obtained for the U10 : HA mixtures with a polymer proportion of 10 : 1. The behavior of the binary gels studied is the result of the formation of a more structured three-dimensional network between the U10 and HA molecules. Shearing of this polymer network requires application of a greater force than is needed to shear the structure of the separate gels. Inclusion of HA in a proportion of 1 : 10 has a fixing effect on the polymer network, resulting in greater resistance to shearing in the compound gel. The relative thixotropic area -A(R)- shows maximum values (A(R)=17.215%) for the same polymer composition. The evolution of the two parameters indicates that restructuring of the molecular interactions for this polymer proportion (10 : 1) takes place; the result is a reinforced three-dimensional structure in the gelled system, which increases the thixotropic properties. The same composition leads to a maximum of thixotropic properties as well as viscose synergy because both characteristics are closely related to structural changes observed in the binary systems of this composition. Thixotropic systems have a very wide area of application in the pharmaceutical industry. For this reason, the results obtained here considerably increase the use of the gels studied. In fact, incorporation of HA significantly improves a property of acrylic gels which has direct repercussions on the ease and efficiency of their application to the skin.  相似文献   

18.
复合成核剂对聚丙烯结晶行为的影响   总被引:8,自引:0,他引:8  
以超细橡胶粒子与有机磷酸盐成核剂复配的方法制备了一种新型复合成核剂,通过示差扫描量热法(DSC)比较了复合成核剂改性PP以及有机磷酸盐成核剂改性PP的结晶温度、等温结晶行为及等温结晶动力学;利用扫描电子显微镜(SEM)的能谱附件和透射电子显微镜(TEM)研究了复合成核剂的微观形态及其在PP中的分散情况.研究结果表明,复合成核剂中超细橡胶粒子作为载体使有机磷酸盐成核剂附着在其表面,提高了成核剂在聚丙烯中的分散性,因而提高了成核剂的成核效率,当成核剂用量较小时,即可明显提高PP的结晶速率和力学性能.  相似文献   

19.
The technological need for new and better soft materials as well as the drive for new knowledge and fundamental understanding has led to significant advances in the field of nanocomposite gels. A variety of complex gel structures with unique chemical, physical, and biological properties have been engineered or discovered at the nanoscale. The possibility to form self-assembled and supramolecular morphologies makes organic polymers and inorganic nanoparticles desirable building blocks for the design of water based gels. In this review, we highlight the most recent (2004–2008) accomplishments and trends in the field of nanocomposite polymer hydrogels with a focus on creative approaches to generating structures, properties, and function within mostly biotechnological applications. We examine the impact of published work and conclude with an outline on future directions and challenges that come with the design and engineering of new nanocomposite gels.  相似文献   

20.
Summary: A new type of nanomaterial prepared from ternary systems polymer/bicopper organic complex/solvent is presented. Each binary system displays differing types of behaviour: The polymer solutions produce thermoreversible gels while the bicopper organic complex forms randomly-dispersed, self-assembled threads in organic solvents The nanomaterial results from the encapsulation of the bicopper complex threads into the polymer fibrils through heterogeneous nucleation. The magnetic behaviour and the rheological properties of these materials will be briefly outlined and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号