首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nucleation efficiency of dibenzylidene sorbitol, methyldibenzylidene sorbitol and 1,2,3,4-bis- (3,4-dimethylbenzylidene) sorbitol in the crystallisation of the monoclinic phase of isotactic polypropylene has been evaluated by differential scanning calorimetry as a function of cooling rate and nucleation agent concentration. In order to analyse the nucleation activity of the additives, the self-nucleation process of the pure polypropylene has also been studied by thermal techniques. A large increment in the crystallisation temperatures has been obtained even for the lowest additive concentration, and the nucleating efficiencies are of the highest observed for α-nucleating agents in isotactic polypropylene. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Comparative Study of Efficiency of Nucleating Agents in PA-6   总被引:1,自引:0,他引:1  
The isothermal and anisothermal crystallization of nucleated polyamide-6 (PA-6) was investigated by DSC. A comparative study was made of twelve potential nucleating agents, including some commercial products for PA-6 and polypropylene. The amide wax processing aid lubricant originally introduced into the polymer was found to exhibit a marked nucleation ability. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Nucleation of crystallizable polymers is quantified through an efficiency scale obtained and calculated using differential scanning calorimetry (DSC). This scale, defined in self-nucleation experiments, is a simple, convenient and reliable calorimetric efficiency scale. Typical nucleating agents for isotactic polypropylene are evaluated; they rate at best at 60 to=70% on this efficiency scale.
Zusammenfassung Anhand einer unter Einsatz von DSC erhaltenen und berechneten Effizienzskale wurde eine Quantifizierung der Keimbildung bei kristallisierbaren Polymeren vorgenommen. Diese in selbstkeimbildenden Experimenten definierte Skale ist eine einfache, praktische und sinnvolle kalorimetrische Effizienzskale. Für isotaktisches Polypropylen wurden typische Keimbildungsagenzien entwickelt, deren Bestgeschwindigkeit auf dieser Effizienzskale bei 60 bis 70% liegt.
  相似文献   

4.
作为非常重要的软物质材料,超分子聚合物凝胶代表了一个全新的概念和更复杂的凝胶体系.这种新型的超分子体系的构建,是基于多种非共价相互作用协同的多层次组装.即小分子构筑基元首先组装成为超分子聚合物,而这些非共价聚合物的多层次组装形成凝胶的纳米结构.超分子聚合物凝胶无论是在结构上,还是在性能上都具有很多崭新的特点.因此,尽管有关超分子聚合物凝胶的研究开展的时间还很短,这一体系所表现出的独特性以及巨大潜力已经引起科学家们越来越广泛的关注.本文简要综述了这一领域的最新进展.主要论述基于多种非共价相互作用的超分子聚合物凝胶的构建以及对其力学性能的调控.  相似文献   

5.
The effect of nucleating agents on the polymorphic crystallization behavior of poly(butylene adipate) (PBA) was studied with four kinds of commercially available nucleating agents, such as talc and boron nitride. The crystal structures of the α and β forms were studied with wide‐angle X‐ray diffraction. The β‐to‐α‐crystal transformation of PBA in the absence and presence of the nucleating agents in isothermal crystallization and nonisothermal crystallization processes was studied with differential scanning calorimetry and polarized optical microscopy. In both isothermal and nonisothermal crystallization, the introduction of nucleating agents selectively initiated the nucleation of the α‐form crystal, which was relatively slow in the absence of nucleating agents. The nucleating activity of the four kinds of nucleating agents in the crystallization of the PBA α‐form crystal was determined by the study of the nonisothermal crystallization, spherulite morphology, and isothermal kinetics. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2340–2351, 2005  相似文献   

6.
In this study, thymine and melamine were introduced as nucleating agents for poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerates) (PHBVs) and poly(3‐hydroxybutyrate) (PHB), and their effects were compared with that of boron nitride (BN). Because the overall crystallization rate of PHBVs decreases significantly with the increase in the 3‐hydroxyvalerate comonomer content, the study focused on the crystallization of PHBVs. Isothermal crystallization kinetics of the neat PHBVs and the nucleated PHBVs were studied by differential scanning calorimetry (DSC). The Avrami equation was derived and the parameters were assessed for the nucleation and crystal growth mechanism. The nucleation and crystal growth were examined using polarized optical microscopy. All nucleating agents had similar particle sizes and showed good dispersion in the polymer matrix, as revealed by scanning electron microscopy. The results indicated that BN and thymine significantly increased the overall crystallization rate for all PHBVs studied and demonstrated very similar nucleating effects. Melamine reacted with PHBVs and accelerated the thermal degradation, and hence was less effective in nucleating PHBVs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1564–1577, 2007  相似文献   

7.
A simple, convenient and reliable calorimetric efficiency scale is proposed for the evaluation of nucleating additives for polymers. The scale is based on conventional differential scanning calorimetry cooling runs and makes use of a crystallization range determined in self-nucleation experiments. It can be correlated with spherulite sizes, and indicates the potential range of improvement of nucleating additives. Typical nucleating agents for isotactic polypropylene are evaluated; at best they rate at 60 to ca. 70% on this efficiency scale. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Temperature modulated dynamic mechanical analysis (TMDMA) was performed in the same way as temperature modulated DSC (TMDSC) measurements. As in TMDSC TMDMA allows the investigation of reversible and non-reversible phenomena during crystallisation of polymers. The advantage of TMDMA compared to TMDSC is the high sensitivity for small and slow changes in crystallinity, e.g. during re-crystallisation. The combination of TMDMA and TMDSC yields new information about local processes at the surface of polymer crystallites. It is shown that during and after isothermal crystallisation the surface of the individual crystallites is in equilibrium with the surrounding melt. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
曹开宇  高歌 《化学教育》2019,40(20):31-34
差示扫描量热法(Differential Scanning Calorimetry,DSC)是高分子物理教学中的一个经典实验。本文分别对DSC的工作原理、影响实验的因素、DSC在高分子科学中的应用以及教学中的实践体会作了详尽的阐述,并且对今后的实验教学提出了一些建议。  相似文献   

10.
The crystallization of poly(ethylene terephthalate) (PET) was studied in the presence of nucleating agents and promoters. The effect of both by themselves and in concert was investigated using differential scanning calorimetry. The aim of this work is to find conditions of fast crystallization of PET. Sodium benzoate(SB) and Surlyn® (S) substantially increase the crystallization rate of PET at higher temperature owing to a reduction in the energy barrier towards primary nucleation, but they accelerate crystallization even more at lower temperature with an additional improvement of the molecular mobility of PET chains. Chain scission of PET caused by the reaction with the nucleating agents was proven by determination of molecular weight. The addition of S alone led to a lower reduction in molecular weight. A series of N-alkyl-p-toluenesulfonamides (ATSAs) were shown to effectively promote molecular motion of the PET chains, leading to an increase in crsytallization rate at lower temperature. A remarkable acceleration of crystallization of PET was attained at lower temperature when S and ATSA were added together. When the content of ATSA is low, S has the dominant influence due to its dual effect of decreasing energy barrier towards nucleation and promoting molecular motion of PET chains. A further increase of crystallization rate of PET was found only after an addition of ATSA of above 5 wt.%.Dedicated to Professor Bernhard Wunderlich on the occasion of his 65th birthdayThis work was supported by State Science and Technology Commission, and partially by National Science Foundation.  相似文献   

11.
In this work, the nonisothermal crystallization and subsequent melting behaviors of polypropylene (PP) nucleated with different nucleating agents (NAs) have been studied. α‐phase NA 1,3:2,4‐bis (3,4‐dimethylbenzylidene) sorbitol (DMDBS, Millad 3988), β‐phase NA aryl amides compound (TMB‐5), and their compounds were introduced into PP matrix, respectively. The results show that the nonisothermal crystallization behaviors and crystalline structures of PP with compounded NAs are dependent on the composition of NAs. In the sample of PP with 0.1 wt % DMDBS and 0.1 wt % TMB‐5, the nucleation efficiency (NE) of TMB‐5 is much higher than that of DMDBS and PP crystallizes mainly nucleated by TMB‐5, and in this condition, β‐phase PP is the main crystallization structure. For the sample of PP with 0.2 wt % DMDBS and 0.2 wt % TMB‐5, 0.2 wt % DMDBS has higher NE than 0.2 wt % TMB5, and α‐phase is the main crystalline structure. The cooling rate is proved to be very important in controlling the nonisothermal crystallization behavior and the final crystalline structure of nucleated PP. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1853–1867, 2008  相似文献   

12.
13.
14.
Intense parasitic nucleation has been observed at the surface of differential scanning calorimetry samples for various polymers, whereas their crystallization traces exhibit complex shapes. Revisited overall kinetics theories and computer simulation, taking into account small thickness of samples and transcrystallinity effects, allow to explain and reproduce experimental ‘double peaks’, currently observed with polyamide 6-6. The beginning of the transformation and the main peak are attributed to surface and bulk nucleations, respectively. As a consequence, any DSC experiment should be followed by a microscopic observation and more accurate models including thermal gradients and resistances should be developed for their interpretation.  相似文献   

15.
Polymer networks, which are materials composed of many smaller components—referred to as “junctions” and “strands”—connected together via covalent or non‐covalent/supramolecular interactions, are arguably the most versatile, widely studied, broadly used, and important materials known. From the first commercial polymers through the plastics revolution of the 20th century to today, there are almost no aspects of modern life that are not impacted by polymer networks. Nevertheless, there are still many challenges that must be addressed to enable a complete understanding of these materials and facilitate their development for emerging applications ranging from sustainability and energy harvesting/storage to tissue engineering and additive manufacturing. Here, we provide a unifying overview of the fundamentals of polymer network synthesis, structure, and properties, tying together recent trends in the field that are not always associated with classical polymer networks, such as the advent of crystalline “framework” materials. We also highlight recent advances in using molecular design and control of topology to showcase how a deep understanding of structure–property relationships can lead to advanced networks with exceptional properties.  相似文献   

16.
The nonisothermal crystallization behaviors of isotactic polypropylene (iPP) with an aryl amide derivative TMB‐5 as β‐form nucleating agent has been investigated by differential scanning calorimetry, X‐ray diffraction, and polarized optical microscopy. The feature of crystallite morphology depends on concentration and thermal conditions. At low concentrations, TMB‐5 molecules aggregate into fibril structures and presented blunt exothermic peak with a shoulder at high temperature. The surface of these fibrils host active sites tailored for the nucleation of β‐iPP, represented by clusters of microcrystallites. With increasing concentration, αβ‐transcrystalline layer develops on the lateral surface of needle‐shaped TMB‐5. Enhanced multiple endotherms indicate the ensuing crystals are less perfect and easily transformed into more stable forms. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 314–325, 2009  相似文献   

17.
Nucleating Agents in Polypropylene   总被引:4,自引:0,他引:4  
The effects of nucleating agents such as dibenzylidene sorbitol (DBS) (a derivative of sorbitol), pine crystal 1500, sodium and potassium benzoates in commercial grade isotactic polypropylene iPP are studied using differential scanning calorimetry (DSC). Isothermal crystallization kinetics of polypropylene to the alpha phase have been analyzed using Avrami's model. Results indicate that dibenzylidene sorbitol and pine crystal are very effective in increasing the crystallization temperature of the polymer and number of nuclei formed during crystallization.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

18.
19.
Nanoparticles can be assembled into complex structures and architectures by using a variety of methods. In this review, we discuss recent progress of using polymer crystallization (particularly polymer single crystals, PSCs) to direct nanoparticle assembly. PSCs have been extensively studied since 1957. Mainly appearing as quasi-two-dimensional (2D) lamellae, PSCs are typically used as model systems to determine polymer crystalline structures, or as markers to investigate the crystallization process. Recent research has demonstrated that they can also be used as nanoscale functional materials. Herein, we show that nanoparticles can be directed to assemble into complex shapes by using in situ or ex situ polymer crystal growth. End-functionalized polymers can crystallize into 2D nanosheet PSCs, which are used to conjugate with complementary nanoparticles, leading to a nanosandwich structure. These nanosandwiches can find interesting applications for catalysis, surface-enhanced Raman spectroscopy, and nanomotors. Dissolution of the nanosandwich leads to the formation of Janus nanoparticles, providing a unique method for asymmetric nanoparticle synthesis.  相似文献   

20.
Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl) imide and polymer matrix were extensively studied in the past due to their excellent potential in a broad range of energy related applications. Poly(vinylidene fluoride) (PVDF) and polyethylene oxide (PEO) are among the most examined polymer candidates as solid polymer electrolyte matrix. In this work, we study the effect of reciprocated suppression of polymer crystallization in PVDF/PEO binary matrix on ion transport and mechanical properties of the resultant solid polymer electrolytes. With electron and X‐ray diffractions as well as energy filtered transmission electron microscopy, we identify and examine the appropriate blending composition that is responsible for the diminishment of both PVDF and PEO crystallites. A three‐fold conductivity enhancement is achieved along with a highly tunable elastic modulus ranging from 20 to 200 MPa, which is expected to contribute toward future designs of solid polymer electrolytes with high room‐temperature ion conductivities and mechanical flexibility. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1450–1457  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号