首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Grafting of methyl methacrylate (MMA) and ethyl acrylate (EA) monomers from immobilized N-chlorosulfonamide (NCSA) groups on crosslinked polystyrene-based beads have been achieved by copper mediated atom transfer radical polymerisation (ATRP) methodology. The initiation takes place via NCSA groups on the polymer, created by chlorination of crosslinked polystyrene sulfonamides. Using CuBr and hexacishexyl triethylenetetramine ligand for MMA and EA grafting showed a first order kinetics for each monomers.Polymers with 3.18 mmol g−1 of NCSA groups have a progressive mass increase in accordance with increasing MMA graft polymerisation up to 380.0% grafting obtained after 6 h.By the method presented, grafting of MMA and EA have been successfully achieved with negligible amounts of free polymer formation (6.2%) in the solution. Hence grafting by ATRP through polymer supported NCSA is superior to the common radical grafting methods which are yielding free polymers simultaneously.The method provides an efficient procedure in preparing core-shell type of polymers, with retention of the bead shapes.  相似文献   

2.
In an attempt to modify water-soluble synthetic polymers, graft Copolymerization of methylmethacrylate (MMA) and ethyl acrylate (EA) onto poly(vinyl alcohol), PVA, has been studied by using gamma irradiation from a Co60 source as initiator. The graft copolymerization was carried out in an aqueous medium by the mutual method in air. The effect of total dose and concentration of vinyl monomers on percentage of grafting has been determined. Water plays a significant role in the enhancement of graft copolymerization and the optimum amount of water to afford maximum grafting has been evaluated. The effect of CH3OH on aqueous grafting of MMA and EA by radiation method has been studied. The graft copolymer has been characterized by IR spectroscopic and thermogravimetric methods.  相似文献   

3.
Graft copolymerization of acceptor monomers MA and MMA onto Himachali wool fiber in an aqueous medium was studied by using Mn(acac)s as initiator. Nitric acid was found to catalyze the graft copolymerization. Percentage of grafting and percent efficiency have been determined as functions of the concentration of chelate, nitric acid, monomer, time, and temperature, Under optimum conditions, MMA produced a maximum grafting of 82.5% while MA afforded maximum grafting to the extent of 27.5%. Relative reactivities of MA and MMA toward grafting have been compared with those of EA, BA, and VAc reported earlier from this laboratory. Different vinyl monomers were found to follow the following reactivity order toward grafting onto wool fiber in the presence of Mn(acac)3: MMA > EA > BA > MA > VAc. An attempt has been made to explain the observed reactivity pattern shown by different vinyl monomers in graft copolymerization reactions.  相似文献   

4.
 A comparative study of various acrylic monomers for grafting onto natural rubber was done. The stability of natural rubber latex (NRL) against coagulum with monomer, mechanical properties of grafted rubbers and percent of grafting were investigated. The NRL with monomers, methylacrylate (MA), ethylacrylate (EA) and n-butylacrylate (n-BA), is unstable but it is stable with methyl methacrylate (MMA), n-butyl methacrylate (BMA) and cyclohexyl methacrylate (CHMA). The mechanical properties and degree of grafting attained a maximum at a total radiation dose of 4 kGy. The values of tensile properties of MMA and CHMA grafted rubbers are almost similar, and higher than those of BMA grafted rubbers. On the other hand, the degree of grafting for CHMA is higher than those of MMA and BMA grafted rubbers. The infrared (IR) spectra of monomer grafted natural rubber were also studied.  相似文献   

5.
Synthetic porous hydrogels are becoming more and more important in the field of biomaterials. Different studies demonstrate that the porous structure promotes the colonisation of living cells and improves the biocompatibility of the implants. The macroporous structure allows not only the control of cellular ingrowth morphology but also the mechanical integration and the regulation of nutrient and hydraulic flow in the hydrogel. In this work poly(ethyl acrylate-co-hydroxyethyl methacrylate) (PEA/PHEMA) copolymers were polymerized using 2% of ethylene glycol dimethacrylate as cross-linking agent and azoiso-botyronitrile as initiator. Five samples were prepared with the EA/HEMA weight ratios of 75/25, 50/50, 25/75 and pure PEA and PHEMA polymers, obtaining different degrees of hydrophilicity. The macroporous structure was obtained by adding poly(acrylonitrile) fibres to the monomers. After polymerization the fibres were eliminated by dissolution in dimethyl formamide. The holes are cylinders of approximately 40μm diameter and are all, more or less, in the same direction, although they are not uniformly distributed. Water sorption isotherms and diffusion properties of the macroporous samples are compared with the samples without holes.  相似文献   

6.
Preservation of beech and spruce wood by allyl alcohol-based copolymers   总被引:1,自引:0,他引:1  
Allyl alcohol (AA), acrylonitrile (AN), methyl methacrylate (MMA), monomers and monomer mixtures AA+AN, AA+MMA were used to conserve and consolidate Beech and Spruce. After impregnation, copolymerisation and polymerisation were accomplished by gamma irradiation. The fine structure of wood+polymer(copolymer) composites was investigated by Scanning Electron Microscopy (SEM). It was observed that copolymer obtained from AA+MMA monomer mixture showed the optimum compatibility. The compressional strength and Brinell Hardness Numbers determined for untreated and treated wood samples indicated that the mechanical strength of wood+copolymer composites was increased. It was found that the mechanical strength of the wood samples containing the AA+MMA copolymer was higher than the others. In the presence of P(AA/MMA), at highest conversion, the compressive strength perpendicular to the fibres in Beech and Spruce increased approximately 100 times. The water uptake capacity of wood+copolymer composites was observed to decrease by more than 50% relative to the original samples, and biodegradation did not take place.  相似文献   

7.
Methyl methacrylate (MMA), methyl acrylate (MA), and ethyl acrylate (EA) have been graft copolymerized onto wool fiber in aqueous medium using the chromium acetylacetonate-tertiary-butyl hydroperoxide (Cr(acac)3-TBHP) system as initiator. The percentage of grafting has been determined as a function of the concentrations of monomer, chelate, and TBHP, and the time and temperature under optimum conditions. MMA produced a maximum grafting of 119.8%, MA produced a maximum grafting of 56%, while EA afforded maximum grafting to the extent of 41.9%. Different vinyl monomers were found to follow the following reactivity order toward grafting onto wool fiber in the presence of the Cr(acac)3-TBHP system: MMA > MA > EA.  相似文献   

8.
Grafting polymerisation of acrylic monomers onto cellulose chains represents a useful method of restoration for both artificially and naturally aged paper-based materials. In this paper, some results concerning the grafting polymerisation of ethyl acrylate/methyl methacrylate 75/25 wt.% copolymer onto several paper grades are reported, highlighting how the presence of fillers in the raw materials reduced the grafting yields. The consolidating and protective effects have been investigated by evaluating the mechanical properties and the wetting behaviour of the grafted samples, and comparing them with the original and aged substrates.  相似文献   

9.
In order to initiate a comprehensive study of graft copolymerization of vinyl monomers onto soluble protein-gelatin, we have studied grafting of ethyl acrylate (EA) and methyl methacrylate (MMA) onto gelatin using eerie ammonium nitrate (CAN) and eerie ammonium sulfate (CAS) as the redox initiator in an aqueous medium. A small amount of mineral acid (HNO3 with CAN and H2SO4 with CAS) was found to catalyze the graft copolymerization. Graft copolymerization reactions were carried out at different temperatures. Maximum grafting occurred at 65°C both with EA and MMA. Percentage grafting has been determined as function of 1) concentration of monomer (EA and MMA), 2) concentration of initiator (CAN and CAS), 3) concentration of acid (HNO3 and H2SO4), 4) time, and 5) temperature.  相似文献   

10.
We investigated the structures induced by an irradiation of a near‐infrared (NIR) femtosecond laser pulse in dye‐doped polymeric materials {poly(methyl methacrylate) (PMMA), thermoplastic epoxy resin (Epoxy), and a block copolymer of methyl methacrylate and ethyl acrylate‐butyl acrylate [p(MMA/EA‐BA) block copolymer]}. Dyes used were classified into two types—type 1 with absorption at 400 nm and type 2 with no absorption at 400 nm. The 400‐nm wavelength corresponds to the two‐photon absorption region by the irradiated NIR laser pulse at 800 nm. Type 1 dye‐doped PMMA and p(MMA/EA‐BA) block copolymer showed a peculiar dye additive effect for the structures induced by the line irradiation of a NIR femtosecond laser pulse. On the contrary, dye‐doped Epoxy did not exhibit a dye additive effect. The different results among PMMA, p(MMA/EA‐BA) block copolymer, and Epoxy matrix polymers are supposed to be related to the difference of electron‐acceptor properties. The mechanism of this type 1 dye‐additive‐effect phenomenon for PMMA and p(MMA/EA‐BA) block copolymer is discussed on the basis of two‐photon absorption of type 1 dye at 400 nm by the irradiation of a femtosecond laser pulse with 800 nm wavelength and the dissipation of the absorbed energy to the polymer matrix among various transition processes. Dyes with a low‐fluorescence quantum yield favored the formation of thicker grating structures. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2800–2806, 2002  相似文献   

11.
α-Methylstyrene (MS) and isobutyl vinyl ether (VE) readily polymerize, styrene (S) polymerizes to a small extent, and isobutylene (IB), butadiene (BD), and isoprene (IP) fail to polymerize in the presence of catalytic amounts of AlCl3 when propionitrile, ethyl propionate, and methyl isobutyrate are used as reaction media. MS polymerizes readily and S polymerizes with difficulty in the presence of AlCl3 to yield homopolymers when acrylonitrile (AN) is present and copolymers with ethyl acrylate (EA) and methyl methacrylate (MMA). VE readily homopolymerizes, while IB, BD, and IP fail to polymerize in the presence of AlCl3 and the acrylic monomers. VE readily homopolymerizes, S and MS polymerize to a very small extent, and IB, BD, and IP do not polymerize in the presence of ethylaluminum sesquichloride (EASC) in polar solvents. VE readily homopolymerizes in the presence of EASC and the acrylic monomers. MS polymerizes to a small extent in the presence of EASC and the acrylic monomers to yield equimolar copolymers with EA and MMA and a mixture of cationic homopolymer and equimolar copolymer with AN. S yields equimolar copolymers in low yield in the presence of EASC and the acrylic monomers. IB, BD, and IP in the presence of EASC do not polymerize to any significant extent when EA is present, form AN-rich copolymers and yield poly(methyl methacrylate) in the presence of MMA. A revised mechanism is presented for the formation of cationic, radical, random, and alternating copolymers as well as alternating copolymer graft copolymers in the copolymerization of donor and acceptor monomers.  相似文献   

12.
Several copolymers of 2-hydroxyethyl methacrylate (HEMA) with methyl acrylate (MA), ethyl acrylate (EA), n-butyl acrylate (BA), and methyl methacrylate (MMA) were prepared at 70°C in nitrogen atmosphere using 0.2% (w/v) benzoyl peroxide as initiator. The copolymer composition was evaluated by estimation of hydroxyl group in the copolymers. Intrinsic viscosity of HEMA–EA, HEMA–BA, and HEMA–MMA copolymers was determined at 35°C in dimethyl formamide. Molecular weight distribution of copolymer samples was evaluated by gel permeation chromatography. Thermal behavior of the copolymers was investigated by dynamic thermogravimetry. Thermal stability decreased on increasing HEMA content in MA, EA, and BA copolymers. However, a reverse trend was observed in HEMA–MMA copolymers.  相似文献   

13.
Blends of isotactic (natural) poly(3‐hydroxybutyrate) (PHB) and poly(methyl methacrylate) (PMMA) are partially miscible, and PHB in excess of 20 wt % segregates as a partially crystalline pure phase. Copolymers containing atactic PHB chains grafted onto a PMMA backbone are used to compatibilize phase‐separated PHB/PMMA blends. Two poly(methyl methacrylate‐g‐hydroxybutyrate) [P(MMA‐g‐HB)] copolymers with different grafting densities and the same length of the grafted chain have been investigated. The copolymer with higher grafting density, containing 67 mol % hydroxybutyrate units, has a beneficial effect on the mechanical properties of PHB/PMMA blends with 30–50% PHB content, which show a remarkable increase in ductility. The main effect of copolymer addition is the inhibition of PHB crystallization. No compatibilizing effect on PHB/PMMA blends with PHB contents higher than 50% is observed with various amounts of P(MMA‐g‐HB) copolymer. In these blends, the graft copolymer is not able to prevent PHB crystallization, and the ternary PHB/PMMA/P(MMA‐g‐HB) blends remain crystalline and brittle. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1390–1399, 2002  相似文献   

14.
To improve the surface of carbon fiber, the grafting reaction of copolymer containing vinyl ferrocene (VFE) onto a carbon‐fiber surface by a ligand‐exchange reaction between ferrocene moieties of the copolymer and polycondensed aromatic rings of carbon fiber was investigated. The copolymer containing VFE was prepared by the radical copolymerization of VFE with vinyl monomers, such as methyl methacrylate (MMA) and styrene, using 2,2′‐azobisisobutyronitrile as an initiator. By heating the carbon fiber with poly(VFE‐co‐MMA) (number‐average molecular weight: 2.1 × 104) in the presence of aluminum chloride and aluminum powder, the copolymer was grafted onto the surface. The percentage of grafting reached 46.1%. On the contrary, in the absence of aluminum chloride, no grafting of the copolymer was observed. Therefore, it is considered that the copolymer was grafted onto the carbon‐fiber surface by a ligand‐exchange reaction between ferrocene moieties of the copolymer and polycondensed aromatic rings of carbon fiber. The molar number of grafted polymer chain on the carbon‐fiber surface decreased with increasing molecular weight of poly(VFE‐co‐MMA) because the steric hindrance of grafted copolymer on the carbon‐fiber surface increases with increasing molecular weight of poly(VFE‐co‐MMA). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1868–1875, 2002  相似文献   

15.
The interfacial region of a model multilayer coating system on an aluminium substrate has been investigated by high‐resolution time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). Employing ultra‐low‐angle microtomy (ULAM), the interface between a poly(vinylidene difluoride) (PVdF)‐based topcoat and a poly(urethane) (PU)‐based primer ‘buried’ >20 µm below the PVdF topcoat's air/coating surface was exposed. Imaging ToF‐SIMS and subsequent post‐processing extraction of mass spectra of the ULAM‐exposed interface region and of the PVdF topcoat and PU primer bulks indicates that the material composition of the polymer/polymer interface region is substantially different to that of the bulk PVdF and PU coatings. Analysis of the negative ion mass spectra obtained from the PVdF/PU interface reveals the presence of a methacrylate‐based component or additive at the interface region. Reviewing the topcoat and primer coating formulations reveals that the PVdF topcoat formulation contains methyl methacrylate (MMA)–ethyl acrylate (EA) acrylic co‐polymer components. Negative ion ToF‐SIMS analysis of an acrylic co‐polymer confirms that it is these components that are observed at the PVdF/PU interface. Post‐processing extraction of ToF‐SIMS images based on the major ions of the MMA–EA co‐polymers reveals that these components are observed in high concentration at the extremities of the PVdF coating, i.e. at the polymer/polymer interface, but are also observed to be distributed evenly throughout the bulk of the PVdF topcoat. These findings confirm that a fraction of the MMA–EA acrylic co‐polymers in the formulation segregate to the topcoat/primer interface where they enhance the adhesive properties exhibited by the PVdF topcoat towards the underlying PU primer substrate. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
细乳液聚合制备阳离子型含氟烷基丙烯酸酯共聚物乳液   总被引:2,自引:0,他引:2  
采用细乳液聚合技术制备得到稳定的阳离子型甲基丙烯酸甲酯/甲基丙烯酸十八烷基酯/含氟烷基丙烯酸酯共聚物乳液,考察了均质强度(振幅)、均质时间以及难溶助剂十六烷(HD)用量对阳离子型FA共聚物乳胶粒尺寸及形貌的影响.结合TEM和纳米粒度及电位分析仪测试数据分析发现,均质条件的改变明显影响该阳离子型FA共聚物乳胶粒的粒径大小,粒径在80~150nm之间变化.细乳液聚合技术得到内部形态多样的乳胶粒,长链的含氟烷基链微相分离,更有助于提高该FA共聚物乳胶膜的憎水性,水滴在经阳离子型FA细乳液处理后的棉布上的平衡静态接触角最高可达150°.  相似文献   

17.
Methyl methacrylate (MMA), acrylic acid (AAc), and vinyl acetate (VAc) were graft copolymerized onto Himachali wool in an aqueous medium by using vanadium oxyacetyl acetonate as initiator. Graft copolymerization was studied at 45, 55, 65, and 75°C for various reaction periods. The percentage of grafting was determined as functions of concentration of monomers, concentration of initiator, time, and temperature. The maximum percentage of grafting with each monomer occurred at 55°. Several grafting experiments were carried out in the presence of various additives which include HNO3, DMSO, and pyridine. Nitric acid was found to promote grafting of MMA. All these additives had adverse effects on grafting of VAc and AAc. MMA, VAc, and AAc were found to differ in reactivity toward grafting and followed the order MMA > AAc > VAc.  相似文献   

18.
双组份网状共聚物的动态力学性质   总被引:1,自引:0,他引:1  
本文研究了端乙烯基聚氨酯预聚物(VTPU)同乙烯类单体甲基丙烯酸甲酯(MMA)、苯乙烯(St)、醋酸乙烯酯(VAc)、和甲基丙烯酸丁酯(BMA)聚合得到的双组份网状共聚物(BCN′s)的动态力学性能及形态结构。四种BCN′s试样两组份在动态力学谱上均有半相容的特征。体系的交联密度增大,混合熵增加,相容性改善,试样中可溶性组份含量随BCN′s的组成而变化。溶胶组份可改善体系中两组份的相容性。  相似文献   

19.
Small well-defined core-shell poly(methyl methacrylate)-bovine serum albumin (PMMA-BSA) particles have been prepared in a direct one-step graft copolymerization of MMA from BSA at 75 degrees C in water with a trace amount of Cu2+ (5 microM). Initially, BSA generates free radicals and acts as a multifunctional macroinitiator, which leads to the formation of an amphiphilic PMMA-BSA grafting copolymer. Such formed copolymer chains act as a polymeric stabilizer to promote further emulsion polymerization of MMA inside, resulting in surfactant-free stable core-shell particles, confirmed by a transmission electron microscopic (TEM) analysis. The PMMA-BSA copolymers as well as PMMA homopolymer inside the particles were isolated by Soxhlet extraction and characterized by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetry (TG). The highest grafting efficiency was approximately 80%. Effects of the reaction temperature, the MMA/BSA ratio, and the concentrations of Cu2+ and BSA on such core-shell particle formation have been systematically studied. Due to their inert PMMA core and biocompatible BSA shell, these small polymer particles are potentially useful in biomedical applications.  相似文献   

20.
胶原接枝改性用于制备红外低发射率涂层的研究   总被引:6,自引:0,他引:6  
用甲基丙烯酸甲酯在硝酸铈铵和偶氮二异丁腈的联合引发下对胶原进行接枝共聚改性,并用制得的胶原接枝共聚物颗粒与氧化铟纳米粒子复合制成涂层.研究了接枝反应温度及萃取剂对胶原接枝共聚物及其复合物涂层的红外发射率的影响,同时对复合物涂层红外发射率的降低机理进行了初步探讨.结果表明,在反应温度为50~55℃时,先后用丙酮和水作为萃取剂,可制得粒径为40~80nm的胶原接枝共聚物颗粒,该颗粒与氧化铟纳米粒子复合后,涂层的红外发射率(8~14μm)较单一的胶原接枝共聚物和氧化铟纳米粒子的红外发射率明显降低,胶原接枝共聚物纳米颗粒和氧化铟纳米粒子之间显示出较强的复合协同效应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号