首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Cellulose/iron oxide hybrids were prepared by the controlled hydrolysis of FeC2O4 in the presence of vegetable and bacterial cellulose fibres as substrates. By varying the relative amount of FeC2O4 and NaOH, either hematite or magnetic iron oxides were grown at the cellulose fibres surfaces. This chemical strategy was used for the production of a number of materials, whose coloristic properties associated to their reinforcement role allowed their use as new hybrid pigments for thermoplastic starch (TPS) based products. The TPS reinforced materials were characterized by several techniques in order to evaluate: the morphology and the compatibility between the matrix and the fillers; the mechanical reinforcement effect of the cellulose/iron oxide pigments on TPS and the coloristic properties of the composites. All materials showed good dispersion and strong adhesion for the cellulose/iron oxide nanocomposites in the TPS matrix thus resulting in improved mechanical properties.  相似文献   

2.
The aims of this study were to develop composite films based on potato starch and cellulose modified with toluenediisocyanate, to investigate their morphology and structure, and to evaluate their behavior to enzymatic hydrolysis and their potential use to manufacture of biodegradable seedling pots. The effects of modified cellulosic fibers upon mechanical properties and biodegradability of composite materials based on starch matrix were investigated by tensile strength tests, Fourier infrared spectroscopy, X‐ray diffraction, and dynamic vapor sorption. The behavior of the films to enzymatic hydrolysis with amylase and cellulase was studied; the kinetic of enzymatic hydrolysis and characterization of materials are reported. Chemical modification of cellulose improves tensile strength with about 47%, and decreases the biodegradability of composites making them more resistant to microbial attack, thus prolonging their shelf life. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Preparation of cellulose nanofibril (CNF)-reinforced, biodegradable polymer composites is challenging in that it’s hard to achieve good dispersion of the hydrophilic cellulose fibers in a hydrophobic polymer matrix. In this work, we developed a surfactant-free and efficient process to prepare CNF-reinforced poly (lactic acid) (PLA) composites from an aqueous dichloromethane Pickering emulsion self-emulsified by CNFs. CNF/PLA composites of homogeneous dispersion were obtained upon evaporation of CH2Cl2, filtration, drying and hot-pressing. Differential scanning calorimetry measurement revealed an enhanced crystallization capacity of the CNF/PLA composites. Thermogravimetric analysis indicated an increase of onset degradation temperature. The composites displayed an enhanced storage modulus compared with neat PLA throughout the testing temperature range, and especially in the high-temperature region (>70 °C). Enhancements of the flexural modulus and strength were also achieved.  相似文献   

4.
Reducing water absorption in compostable starch-based plastics   总被引:1,自引:0,他引:1  
To improve the mechanical and physical properties of corn starch-based bioplastics the addition of natural polymers was investigated. Thermoplastic starch (TPS) was made of 70 g corn starch and 30 g glycerol. To this mixture 10–10 g of cellulose, hemicellulose and zein (protein) were added. Mechanical strength, water absorption and enzymatic degradation of composite materials were measured. Unfilled TPS and 10 w/w% polycaprolactone filled TPS were used as controls in the experiments. All the samples were biodegradable by enzymes. The tensile strength of unfilled and biopolymer filled TPS samples were significantly higher than that of the polycaprolactone filled one. Hemicellulose and zein composites had the best mechanical strength (10.4 and 11.5 MPa). Water uptake of each sample was measured using five different relative humidities. There were slight differences in water uptake of polycaprolactone, hemicellulose and zein filled TPS, however unfilled and cellulose filled samples absorbed more moisture than the polycaprolactone control in all the relative humidities used.  相似文献   

5.
The aim of this study was to measure the thermal properties of foamed nano/macro filler–reinforced styrene maleic anhydride (SMA) composites. SMA (66%) as a polymer matrix (10% maleic anhydride content) and various fillers including wood flour, starch, α-cellulose, microcrystalline cellulose and cellulose nanofibrils as reinforcing agents (30%) and lubricant (4%) were used to manufacture the composites in a twin-screw extruder. According to the thermogravimetric analysis (TGA) results, thermal degradation of all the foamed composites was found to be lower than that of SMA composites. The storage modulus values were negatively affected with a second time foaming (reprocessing [recycling] the initially processed composites a second time), as were loss modulus and Tg. As a result, second-time-foamed composite modulus values were lower than those of the foamed composites. According to the melt flow index (MFI) results, viscosity of the SMA was found to increase with the addition of fillers.  相似文献   

6.
Dynamic thermogravimetric analysis under nitrogen flow was used to investigate the thermal decomposition process of high-density poly(ethylene) (HDPE)-based composites reinforced with cellulose fibers obtained from the recycling of multilayer carton scraps, as a function of the cellulose content and the compatibilization. The Friedman, Flynn–Wall–Ozawa, and Coats–Redfern methods were used to determine the apparent activation energy (E a) of the thermal degradation of the cellulose component into the composites. E a has been found dependent on the cellulose amount and on the cellulose/polymer matrix interfacial adhesion. In particular, it has been evidenced an increase of the cellulose thermal stability as a consequence of the improved interfacial adhesion between the components in NFR composites.  相似文献   

7.
Composites of polystyrene (PS) with cellulose microfibres and oat particles, obtained by melt mixing, were examined. The compatibilization of the composites was carried out by addition of maleic anhydride-functionalized copolymers (SEBS-g-MA, PS-co-MA) and poly(ethylene glycol) to improve the fibre–matrix interfacial interactions. The plain components and their composites were characterised by FT-IR, DSC, TGA, SEM microscopy and mechanical tests. The properties of the various systems were analysed as a function of both fibre and compatibilizer amount. The compatibilized PS composites showed enhanced fibre dispersion and interfacial adhesion as a consequence of chemical interactions between the anhydride groups on the polymer chains and the hydroxyl groups on the fibres, as demonstrated by FT-IR spectroscopy. DSC analysis pointed out a neat increase of T g of composites on addition of SEBS-g-MA, as compared to PS-co-MA. The thermal stability of composites was also influenced by the type and amount of fibres, as well as by the structure and concentration of compatibilizer. The effect of the reactive copolymers on the composites properties was accounted for on the basis of the polymer–polymer miscibility and chemical interactions at the matrix/filler interface.  相似文献   

8.
With material consumption increasing, the need for biodegradable materials derived from renewable resources becomes urgent, particularly in the popular field of 3D-printing. Processed natural fibers have been used as fillers for 3D-printing filaments and slurries, yet reports of utilizing pure biomass to 3D-print structures that reach mechanical properties comparable to synthetic plastics are scarce. Here, we develop and characterize slurries for extrusion-based 3D-printing comprised of unprocessed spirulina and varying amounts of cellulose fibers (CFs). Tuning the micro-morphology, density, and mechanical properties of multilayered structures is achieved by modulating the CF amount or drying method. Densified morphologies are obtained upon desiccator-drying, while oven incubation plasticizes the matrix and leads to intermediate densities. Freeze-drying creates low-density foam microstructures. The compressive strengths of the structures follow the same trend as their density. CFs are critical in the denser structures, as without the fibers, the samples do not retain their shape while drying. The compressive strength and strain to failure of the composites progressively increase with increasing filler content, ranging between 0.8 and 16 MPa and 12%–47%, respectively, at densities of 0.51–1.00 g/cm3. The measured properties are comparable to other biobased composites and commercial plastic filaments for 3D-printing.  相似文献   

9.
In this work, cellulose was modified by using 2-(trifluromethyl)benzoylchloride by base catalyzed reaction. Modification of cellulose was confirmed by IR studies. The biodegradable composite films were developed by a film casting method using modified cellulose with poly(vinyl alcohol) and polypyrrolidone in different compositions. Film composites showed good biodegradability. Better barrier and mechanical properties showed by film composites as the percentage of modified cellulose increased. This indicates the importance of modified cellulose as a reinforcing agent. After analyzing these properties of film composites we came to the conclusion that, these biocomposites can be used for membrane and packaging applications.  相似文献   

10.
Cellulose/silver nanoparticles (Ag NPs) composites were prepared and their catalytic performance was evaluated. Porous cellulose microspheres, fabricated from NaOH/thiourea aqueous solution by a sol–gel transition processing, were served as supports for Ag NPs synthesis by an eco-friendly hydrothermal method. The regenerated cellulose microspheres were designed as reducing reagent for hydrothermal reduction and also micro-reactors for controlling growth of Ag NPs. The structure and properties of obtained composite microspheres were characterized by Optical microscopy, UV–visible spectroscopy, WXRD, SEM, TEM and TG. The results indicated that Ag NPs were integrated successfully and dispersed uniformly in the cellulose matrix. Their size (8.3–18.6?nm), size distribution (3.4–7.7?nm), and content (1.1–4.9?wt%) were tunable by tailoring of the initial concentration of AgNO3. Moreover, the shape, integrity and thermal stability were firmly preserved for the obtained composite microspheres. The catalytic performance of the as-prepared cellulose/Ag composite microspheres was examined through a model reaction of 4-nitrophenol reduction in the presence of NaBH4. The composites microspheres exhibited good catalytic activity, which is much high than that of hydrogel/Ag NPs composites and comparable with polymer core–shell particles loading Ag NPs.  相似文献   

11.
Bacterial nanocellulose (BC) is characterized by an exciting interconnection of the important and well-known cellulose properties with the outstanding features of nano-scale materials. As a remarkable benefit of BC the property-controlling fiber network and pore system formed by self-assembly of the cellulose molecules can be modified in situ using additives during biosynthesis. The addition of polyethylene glycol (PEG) 4000 causes a pore size decrease. In presence of β-cyclodextrin or PEG 400 remarkably increased pores can be achieved. Surprisingly, these co-substrates act as removable auxiliaries not incorporated in the BC samples. In contrast, carboxymethyl cellulose and methyl cellulose as additives lead to structural modified composite materials. Using cationic starch (2-hydroxy-3-trimethylammoniumpropyl starch chloride, TMAP starch) double-network BC composites by incorporation of the starch derivative in the BC prepolymer were obtained.  相似文献   

12.
It is completely plausible that unmodified materials of natural origin, such as the native macromolecules cellulose or starch, are biodegradable. If these materials are modified then degradation may, depending on the degree of modification, be more difficult or even impossible. In the same manner synthesized macromolecules, whether from renewable or petrochemical sources, could be inert or completey biodegradable, depending on their chemical structure.  相似文献   

13.
A green method—joint mechanical grinding and high pressure homogenization—was used to defibrillate paper pulp into nanofibrils. The prepared cellulose nanofibrils (CNF) were then blended with PVA in an aqueous system to prepare transparent composite film. The size and morphology of the nanofibrils and their composites were observed, and the structure and properties were characterized. The results showed that CNFs are beneficial to improve the crystallinity, mechanical strength, Young’s modulus, T g and thermal stability of the PVA matrix because of their high aspect ratio, crystallinity and good compatibility. Therefore, nano cellulosic fibrils were proven to be an effective reinforcing filler for the hydrophilic polymer matrix. Moreover, the green fabrication approaches will be helpful to build up biodegradable nanocomposites with wide applications in functional environmentally friendly materials.  相似文献   

14.
The indiscriminate use of plastic in food packaging contributes significantly to environmental pollution, promoting the search for more eco-friendly alternatives for the food industry. This work studied five formulations (T1–T5) of biodegradable cassava starch/gelatin films. The results showed the presence of the starch/gelatin functional groups by FT-IR spectroscopy. Differential scanning calorimetry (DSC) showed a thermal reinforcement after increasing the amount of gelatin in the formulations, which increased the crystallization temperature (Tc) from 190 °C for the starch-only film (T1) to 206 °C for the film with 50/50 starch/gelatin (T3). It also exhibited a homogeneous surface morphology, as evidenced by scanning electron microscopy (SEM). However, an excess of gelatin showed low compatibility with starch in the 25/75 starch/gelatin film (T4), evidenced by the low Tc definition and very rough and fractured surface morphology. Increasing gelatin ratio also significantly increased the strain (from 2.9 ± 0.5% for T1 to 285.1 ± 10.0% for T5) while decreasing the tensile strength (from 14.6 ± 0.5 MPa for T1 to 1.5 ± 0.3 MPa for T5). Water vapor permeability (WVP) increased, and water solubility (WS) also decreased with gelatin mass rising in the composites. On the other hand, opacity did not vary significantly due to the films’ cassava starch and gelatin ratio. Finally, optimizing the mechanical and water barrier properties resulted in a mass ratio of 53/47 cassava starch/gelatin as the most appropriate for their application in food packaging, indicating their usefulness in the food-packaging industry.  相似文献   

15.
研究了甘油增塑谷朊粉/淀粉混合体系的动态流变行为与单轴拉伸力学性能,考察了淀粉与水含量的影响.研究结果表明,含水量10%的混合体系储能模量(G′)随淀粉含量增大而增大,并在100℃出现橡胶平台.增塑谷朊粉在30℃呈现凝胶特性,在80℃出现交联网络结构.淀粉粒子可与小麦蛋白质形成复杂相互作用,阻碍蛋白质链段运动,导致模量与强度增加,断裂伸长率降低.含水量为20%与25%时,水份在淀粉粒子与蛋白质网络间起稀释和润滑作用,拉伸强度与断裂伸长率随淀粉含量的增高而降低.  相似文献   

16.
Superabsorbents hydrogel nanocomposites based on starch-g-poly(sodium acrylate) and cellulose nanowhiskers (CNWs) were synthesized. A set of experiments was performed to evaluate the influence of some factors such as NaAc/starch mass ratio, crosslinker, and nanowhiskers amount in the swelling capacity and swelling kinetics. Increasing the NaAc/starch mass ratio up to 7 leads to an increase in the water uptake at a maximum value, however, higher ratios decreased that value due to the increase of crosslinking points. Similarly, the incorporation of CNWs up to 10 wt% provided an improvement in the swelling due to the hydrophilic groups from cellobiose units. Further, the incorporation of CNWs diminishes the water uptake. Besides, the CNWs improved the mechanical properties. SEM images showed that CNWs increase the average porous size of composites. The composites presented good responsive behavior in relation to pH and salt presence allowing those materials suitable for many potential applications.  相似文献   

17.
The use of starch microcrystals as biodegradable particulate filler is evaluated by processing composite materials with a weight fraction of starch ranging from 0 to 60%. In a previous work [Macromolecules, 29, 7624] the preparation technique of a colloidal suspension of hydrolyzed starch and the processing of composite materials by freeze drying and molding a mixture of aqueous suspensions of starch microcrystals and synthetic polymer matrix were presented. Starch microcrystals with dimensions of a few nanometers were obtained from potatoes' starch granules, and it was found that this filler produces a great reinforcing effect, especially at a temperature higher than Tg of the synthetic matrix. Classical models for polymers containing nearly spherical particles based on a mean field approach could not explain this reinforcing effect. The morphology of these nanocomposite systems is discussed in light of aggregate formation and percolation concepts. The sorption behavior of these materials is also performed. Starch is a hygroscopic material, and it is found that the composites absorb more water, as the starch content is higher. The diffusion coefficient of the penetrant is predicted from modified mechanical three branch series-parallel model based on a percolation approach. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2211–2224, 1998  相似文献   

18.
The development of biodegradable polymers is considered to be a good alternative to decrease the volume of the plastic waste disposed into the environment every year. The use of natural polymers as raw materials to develop polymer blends and composites has increased the demand for renewable sources such as starch and soy protein.In this work, the authors prepared and characterized the thermal, mechanical and morphological properties of blends based on poly (-caprolactone) and modified corn starch, with added soy protein isolate (SPI) and sorbitol. All samples were processed by extrusion in a single-screw extruder and hot pressing. It was observed that the addition of modified corn starch and SPI were responsible for the reduction of thermal and mechanical properties of the materials, compared to pristine PCL. However, with increasing amounts of SPI and the reduction of starch incorporated into the samples, their properties tend to recover. The insertion of soy protein isolate in the formulations was done with the aim of balancing the C/N ratio of the blend, which plays a key role in the biodegradation process of these materials.  相似文献   

19.
Summary Cellulose and cellulose mono-, di-, and triacetate were used as stationary phases for liquid chromatography with water as a mobile phase, and the retention behavior of alcohols, ethers, ketones, and chlorides was examined. For cellulose acetate columns, the logarithm of the specific retention volume, (logV g * ), correlated linearly with the logarithm of partition coefficient between 1-octanol and water (log Ko/w), for each homologous group, but all solutes were unretained on cellulose columns. With the exception of chlorides, the intercept values of the log V g * –log Ko/w regression lines increased significantly with increase of acetyl content of cellulose acetates, but the slopes of the regression lines changed little. This suggests that hydrophobic interaction between the acetyl groups of cellulose acetates and the alkyl chains of the solutes is the dominant factor in the retention.The capacity factors for 1-alcohols with cellulos diacetate column indicated a maximum at a column temperature of about 40°C. This unique retention behavior was assumed to be caused by small structural change of the cellulose acetate polymer, because this temperature effect on the retention corresponded with effects observed by differential scanning calorimetry (DSC).  相似文献   

20.
Light-scattering measurements were carried out on three well-fractionated samples of cellulose diacetate (degree of substitution = 2.46) in acetone at 25°C and in 2-butanone at 30–60°C. For the system cellulose diacetate-2-butanone, the theta temperature, Θ, has been quoted as 37°C from cloud-point measurements; it was intended to examine further 2-butanone as a theta solvent. The value of Θ, defined as the temperature at which the second virial coefficient vanishes, was found to be 50°C. This difference in Θ was attributed to association of the dissolved polymer molecules. On the other hand, the weight-average molecular weights obtained in 2-butanone at 50°C were in accord with those determined in a good solvent, acetone. It was established that 2-butanone was a theta solvent for cellulose diacetate with Θ = 50°C. The molecular dimensions observed in 2-butanone were however unreasonably large. Therefore, determinations of the unperturbed dimensions and other conformational parameters in this solvent are withheld. Solution stability and association were examined by light scattering. It was deduced that the difficulty in dissolving the polymer in 2-butanone arose from the copolymeric nature of cellulose diacetate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号