首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The synthesis of poly(tert‐butyl acrylate‐block‐vinyl acetate) copolymers using a combination of two living radical polymerization techniques, atom transfer radical polymerization (ATRP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization, is reported. The use of two methods is due to the disparity in reactivity of the two monomers, viz. vinyl acetate is difficult to polymerize via ATRP, and a suitable RAFT agent that can control the polymerization of vinyl acetate is typically unable to control the polymerization of tert‐butyl acrylate. Thus, ATRP was performed to make poly(tert‐butyl acrylate) containing a bromine end group. This end group was subsequently substituted with a xanthate moiety. Various spectroscopic methods were used to confirm the substitution. The poly(tert‐butyl acrylate) macro‐RAFT agent was then used to produce (tert‐butyl acrylate‐block‐vinyl acetate). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7200–7206, 2008  相似文献   

2.
A series of well‐defined amphiphilic graft copolymers, containing hydrophilic poly(acrylic acid) backbone and hydrophobic poly(butyl acrylate) side chains, were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) without any postpolymerization functionality modification followed by selective acidic hydrolysis of poly(tert‐butyl acrylate) backbone. tert‐Butyl 2‐((2‐bromopropanoyloxy)methyl)‐acrylate was first homopolymerized or copolymerized with tert‐butyl acrylate by RAFT in a controlled way to give ATRP‐initiation‐group‐containing homopolymers and copolymers with narrow molecular weight distributions (Mw/Mn < 1.20) and their reactivity ratios were determined by Fineman‐Ross and Kelen‐Tudos methods, respectively. The density of ATRP initiation group can be regulated by the feed ratio of the comonomers. Next, ATRP of butyl acrylate was directly initiated by these macroinitiators to synthesize well‐defined poly(tert‐butyl acrylate)‐g‐poly(butyl acrylate) graft copolymers with controlled grafting densities via the grafting‐from strategy. PtBA‐based backbone was selectively hydrolyzed in acidic environment without affecting PBA side chains to provide poly(acrylic acid)‐g‐poly(butyl acrylate) amphiphilic graft copolymers. Fluorescence probe technique was used to determine the critical micelle concentrations in aqueous media and micellar morphologies are found to be spheres visualized by TEM. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2622–2630, 2010  相似文献   

3.
The synthesis of new octafunctional alkoxyamine initiators for nitroxide‐mediated radical polymerization (NMRP), by the derivatization of resorcinarene with nitroxide free radicals viz TEMPO and a freshly prepared phosphonylated nitroxide, is described. The efficiency of these initiators toward the controlled radical polymerization of styrene and tert‐butyl acrylate is investigated in detail. Linear analogues of these multifunctional initiators were also prepared to compare and evaluate their initiation efficiency. The favorable conditions for polymerization were optimized by varying the concentration of initiators and free nitroxides, reaction conditions, etc., to obtain well‐defined star polymers. Star polystyrene thus obtained were further used as macro‐initiator for the block copolymerization with tert‐butyl acrylate. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5559–5572, 2007  相似文献   

4.
Automated parallel synthesizers provide fast and comparable screening of different polymerization parameters under similar conditions. In addition, these robotic systems eliminate handling errors, which may affect the results of a kinetic experiment more than the effect of an important parameter. The polymerization temperature and N,Ntert‐butyl‐N‐[1′‐diethylphosphono‐2,2′‐dimethylpropyl]nitroxide concentration were optimized for the homopolymerization of both styrene and tert‐butyl acrylate to improve the control over the polymerization while reasonable polymerization rates were retained. Subsequently, polystyrene and poly(tert‐butyl acrylate) macro initiators were synthesized according to the knowledge obtained from the screening results. These macroinitiators were used for the preparation of block copolymers consisting of styrene and tert‐butyl acrylate. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6202–6213, 2006  相似文献   

5.
A new di‐tert‐butyl acrylate (diTBA) monomer for controlled radical polymerization is reported. This monomer complements the classical use of tert‐butyl acrylate (TBA) for synthesis of poly(acrylic acid) by increasing the density of carboxylic acids per repeat unit, while also increasing the flexibility of the carboxylic acid side‐chains. The monomer is well behaved under Cu(II)‐mediated photoinduced controlled radical polymerization and delivers polymers with excellent chain‐end fidelity at high monomer conversions. Importantly, this new diTBA monomer readily copolymerizes with TBA to further the potential for applications in areas such as dispersing agents and adsorbents. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 801–807  相似文献   

6.
Polypeptide/inorganic hybrid copolymers were obtained by a four-step synthetic approach combining (i) atom transfer polymerization of tert-butyl acrylate, (ii) chemical modification of the bromo end groups of ATRP-polymers into primary amino group using Gabriel reaction, (iii) ring opening polymerization of Nε-trifluoroacetyl-l-lysine or γ-benzyl-l-glutamate N-carboxyanhydrides followed by (iv) the transamidification reaction using a large excess of (3-aminopropyl)trimethoxysilane to substitute the tert-butyl groups of the poly(tert-butyl acrylate) block. Products were characterized using 1H NMR, FT-IR, DSC and MALDI-TOF MS. These techniques proved that polymerization of tert-butyl acrylate was controlled whatever the molecular weight targeted and that bromide was quantitatively converted to amino end group by a original method leading to the synthesis of copolymers in the presence of N-carboxyanhydrides as monomers. Amphiphilic polypeptide/inorganic hybrid copolymers were then achieved.  相似文献   

7.
Poly(acrylic acid) (PAA) and poly(tert-butyl acrylate) (PBA) brushes of various grafting densities were prepared via surface-initiated polymerization of tert-butyl acrylate on mica. PAA was prepared by hydrolyzing the PBA brushes. The swelling behavior of PBA and PAA brushes was studied as a function of grafting density by AFM. The swelling of the polymer layer was found to be higher for PAA in water than for the PBA sample swollen with DFM.  相似文献   

8.
Poly(oxyethylene)s terminated at both ends with 2‐bromopropionate end‐groups were prepared and characterized by means of MALDI TOF mass spectrometry. It was shown, that atom transfer radical polymerization (ATRP) of methyl methacrylate with a poly(oxyethylene) macroinitiator in bulk proceeds with low initiation efficiency while polymerization of tert‐butyl acrylate proceeds with practically quantitative initiation, leading to ABA block copolymers. Originally formed tert‐butyl acrylate blocks contain terminal bromine, as expected for the ATRP mechanism. MALDI TOF analysis indicates, however, that in the later stages of polymerization side reactions lead to elimination of terminal bromine.  相似文献   

9.
Reverse iodine transfer polymerization (RITP), offering the appealing potential of the in situ generation of transfer agents out of molecular iodine I2, is employed in the synthesis of anionic amphiphilic diblock copolymers of poly(styrene) and poly(acrylic acid). Starting with well‐characterized poly(styrene) as macro‐transfer agents synthesized by RITP, diblock copolymers poly(styrene)‐b‐poly(tert‐butyl acrylate) of various lengths are successfully yielded in solution with a good architectural control. These blocks are then subjected to acid deprotection and subsequent pH control to give rise to anionic amphiphilic poly(styrene)‐b‐poly(acrylic acid). Besides, homopolymers of tert‐butyl acrylate are produced by RITP both in solution and in emulsion. Furthermore, a fruitful trial of the synthesis of diblock copolymers poly(tert‐butyl acrylate)‐b‐poly(styrene) is carried out through chain extension of the poly(tert‐butyl acrylate) latex as a macro‐transfer agent in seeded emulsion polymerization of styrene. Finally, the prepared block copolymer is deprotected to bring about its amphiphilic nature and a pH control caters for its anionic character. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4389–4398  相似文献   

10.
Living‐radical polymerization of acrylates were performed under emulsion atom transfer radical polymerization (ATRP) conditions using latexes prepared by a nanoprecipitation technique previously employed and optimized for the polymerization of styrene. A macroinitiator of poly(n‐butyl acrylate) prepared under bulk ATRP was dissolved in acetone and precipitated in an aqueous solution of Brij 98 to preform latex particles, which were then swollen with monomer and heated. Various monomers (i.e. n‐butyl acrylate, styrene, and tert‐butyl acrylate) were used to swell the particles to prepare homo‐ and block copolymers from the poly(n‐butyl acrylate) macroinitiator. Under these conditions latexes with a relatively good colloidal stability were obtained. Furthermore, amphiphilic block copolymers were prepared by hydrolysis of the tert‐butyl groups and the resulting block copolymers were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The bulk morphologies of the polystyrene‐b‐poly(n‐butyl acrylate) and poly(n‐butyl acrylate)‐b‐poly(acrylic acid) copolymers were investigated by atomic force microscopy (AFM) and small angle X‐ray scattering (SAXS). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 625–635, 2008  相似文献   

11.
The free‐radical polymerization of 2,2,2‐trifluoroethyl acrylate (TFEA), 1,1,1,3,3,3‐hexafluoro‐2‐propyl acrylate (HFiPA) and perfluoro‐tert‐butyl acrylate (PFtBA) was carried out under various conditions and the stereostructure of the obtained polymers was investigated. Most polymerizations of the three monomers afforded polymers rich in diad syndiotacticity (r) in bulk or in solution; the r‐specificity was higher in the HFiPA and PFtBA polymerization than in the TFEA polymerization. Although the tacticity was nearly independent of reaction temperature during the polymerization of TFEA, the r‐specificity increased by lowering the reaction temperature during the polymerization of the other two monomers. The polymerization stereochemistry was also affected by the reaction solvents including toluene, tetrahydrofuran, and fluoroalcohols. It was noted that the stereochemistry of the polymerization of HFiPA and PFtBA also depended on the monomer concentration, and a lower monomer concentration led to a higher r‐specificity. By optimizing the aforementioned reaction conditions, the poly(HFiPA) having r = 81% (polymerization in tetrahydrofuran at −98 °C at [M]o = 0.2M) and the poly(PFtBA) having r = 77% (polymerization in toluene at −78 °C at [M]o = 0.2M) were obtained. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1024–1032, 2000  相似文献   

12.
Composite latex particles based on homopolymers and graft‐copolymers composed of polynorbornene (PNB) and poly(tert‐butyl acrylate) (PtBA) were synthesized in microemulsion conditions by simultaneous combination of two distinct methods of polymerization: Ring‐opening metathesis polymerization (ROMP) and atom transfer radical polymerization (ATRP). Only one commercial compound (first generation Grubbs catalyst) was used to initiate the ROMP of norbornene (NB) and activate the ATRP of tert‐butyl acrylate (tBA). Well‐defined nanoparticles with hydrodynamic diameters smaller than 50 nm were prepared with original morphologies depending on the monomer compositions, the type of combination (polymer blend or graft‐copolymer), and the conditions of microemulsion polymerizations. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
The decay of photochemically generated tert-butyl radicals is studied at 48°C in 11 m- and p-substituted toluenes by time-resolved electron spin resonance spectroscopy. It is governed by the second-order self-termination perturbed by a pseudo-first-order reaction of the radical with the toluenes. The first-order lifetimes yield the rate constants kA for hydrogen transfer from toluenes to tert-butyl. Substituent effects on the rate constants confirm the nucleophilic character of the radical.  相似文献   

14.
α-(Alkoxymethyl) acrylates, such as methyl α-(phenoxymethyl) acrylate, benzyl α-(methoxymethyl)acrylate (BMMA), benzyl α-(benzyloxymethyl)acrylate, and benzyl α-(tert-butoxymethyl)acrylate, were synthesized, and their polymerizability and the stereoregularity of the polymers obtained by radical and anionic methods were investigated. The radically obtained polymers were found to be atactic by 13C- and 1H-NMR analyses, but the polymers obtained with lithium reagents in toluene at −78°C were highly isotactic. Further, it is noteworthy that isotactic polymers were also produced with lithium reagents even in tetrahydrofuran. Effects of polymerization temperature and counter cation on stereoregularity were clearly observed in the polymerization of BMMA, and a potassium reagent afforded an almost atactic polymer. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 721–726, 1997  相似文献   

15.
The rate of polymerization of styrene initiated by hydroperoxidized atactic polypropylene in a homogeneous toluene solution has been measured at 60 and 70°C. The reaction is first-order with respect to styrene concentration and independent of the polymeric hydroperoxide concentration above 2 × 10?5N hydroperoxide. The individual rate constants, length and frequency of the grafted polystyrene chains along the polypropylene backbone have been calculated and their significance discussed. The initiation rate constant compares closely with values reported for the analogous tert-butyl hydroperoxide-initiated polymerization. The rate constant for the chain transfer termination elementary step at 70°C., however, is 18 times the value reported for the tert-butyl hydroperoxide-initiated polymerization of styrene. This high constant accounts for the relatively low rates of polymerization observed and high termination rates. Chain deactivation is presumably accelerated by increased collisions between growing styrene chains and inactive propylene hydroperoxide and polystyrene molecules. Distribution of polystyrene grafts on polypropylene is estimated from knowledge of effects of styrene concentration, polymeric hydroperoxide concentration, and temperature upon the rate of polymerization.  相似文献   

16.
Poly(cis‐cyclooctene) is synthesized via ring‐opening metathesis polymerization in the presence of a chain‐transfer agent and quantitatively hydrobrominated. Subsequent graft polymerization of tert‐butyl acrylate (tBA) via Cu‐catalyzed atom transfer radical polymerization (ATRP) from the non‐activated secondary alkyl bromide moieties finally results in PE‐g‐PtBA copolymer brushes. By varying the reaction conditions, a series of well‐defined graft copolymers with different graft densities and graft lengths are prepared. The maximum extent of grafting in terms of bromoalkyl groups involved is approximately 80 mol%. DSC measurements on the obtained graft copolymers reveal a decrease in Tm with increasing grafting density.  相似文献   

17.
The preparation of ABA‐type block copolymers via tandem enhanced spin capturing polymerization (ESCP) and nitroxide‐mediated polymerization (NMP) processes is explored in‐depth. Midchain alkoxyamine functional polystyrenes (Mn = 6200, 12,500 and 19,900 g mol?1) were chain extended with styrene as well as tert‐butyl acrylate at elevated temperature NMP conditions (T = 110 °C) generating a tandem ESCP‐NMP sequence. Although the chain extensions and thus the block copolymer formation processes function well (yielding in the case of the chain extension with styrene number average molecular weights of up to 20,800 g mol?1 (PDI = 1.22) when the 6200 g mol?1 precursor is used and up to 67,500 g mol?1 (PDI = 1.36) when the 19,900 g mol?1 precursor is used and 21,600 g mol?1 (PDI = 1.17) as well as 37,100 g mol?1 (PDI = 1.21) for the tert‐butyl acrylate chain extensions for the 6200 and 12,500 g mol?1 precursors, respectively), it is also evident that the efficiency of the block copolymer formation process decreases with an increasing chain length of the ESCP precursor macromolecules (i.e., for the 19,900 g mol?1 ESCP precursor no efficient chain extension with tert‐butyl acrylate can be observed). For the polystyrene‐blocktert‐butyl acrylate‐block‐polystyrene polymers, the molecular weights were determined via triple detection SEC using light scattering and small‐angle X‐ray scattering. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

18.
Well‐defined star polymers were synthesized with a combination of the core‐first method and atom transfer radical polymerization. The control of the architecture of the macroinitiator based on β‐cyclodextrin bearing functional bromide groups was determined by 13C NMR, fast atom bombardment mass spectrometry, and elemental analysis. In a second step, the polymerization of the tert‐butyl acrylate monomer was optimized to avoid a star–star coupling reaction and allowed the synthesis of a well‐defined organosoluble polymer star. The determination of the macromolecular dimensions of these new star polymers by size exclusion chromatography/light scattering was in agreement with the structure of armed star polymers in a large range of predicted molecular weights. This article describes a new approach to polyelectrolyte star polymers by postmodification of poly(tert‐butyl acrylate) by acrylic arm hydrolysis in a water‐soluble system. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5186–5194, 2005  相似文献   

19.
Heteroarm H‐shaped terpolymers (PS)(PtBA)–PEO–(PtBA)(PS) and (PS)(PtBA)–PPO–(PtBA)(PS) [where PS is polystyrene, PtBA is poly(tert‐butyl acrylate), PEO is poly(ethylene oxide), and PPO is poly(propylene oxide)], containing PEO or PPO as a backbone and PS and PtBA as side arms, were prepared via the combination of the Diels–Alder reaction and atom transfer radical and nitroxide‐mediated radical polymerization routes. Commercially available PEO or PPO containing bismaleimide end groups was reacted with a compound having an anthracene functionality, succinic acid anthracen‐9‐yl methyl ester 3‐(2‐bromo‐2‐methylpropionyloxy)‐2‐methyl‐2‐[2‐phenyl‐2‐(2,2,6,6‐tetramethylpiperidin‐1‐yloxy)ethoxycarbonyl]propyl ester, with a Diels–Alder reaction strategy. The obtained macroinitiator with tertiary bromide and 2,2,6,6‐tetramethylpiperidin‐1‐oxy functional end groups was used subsequently in the atom transfer radical polymerization of tert‐butyl acrylate and in the nitroxide‐mediated free‐radical polymerization of styrene to produce heteroarm H‐shaped terpolymers with moderately low molecular weight distributions (<1.31). The polymers were characterized with 1H NMR, ultraviolet, gel permeation chromatography, and differential scanning calorimetry. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3947–3957, 2006  相似文献   

20.
The synthesis of primary amine end‐functional poly(tert‐butyl acrylate)s has been achieved by using the Gabriel reaction. Polymerization of tert‐butyl acrylate was first achieved by atom transfer radical polymerization using ethyl‐2‐bromoisobutyrate or paramethoxyphenyl‐2‐bromoisobutyrate as initiator. Both resulting polymers, with a bromide‐end atom, were converted into phthalimido intermediates which then were successfully hydrolyzed using potassium hydroxide in tert‐butyl alcohol to result in poly(tert‐butyl acrylate)s terminated by a primary amine function. End group interconversions were followed by 1H NMR, FT‐IR, and MALDI‐TOF MS measurements. All the results proved that quantitative transformations were achieved at each step. Moreover, the method developed is very easy to carry out.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号