首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
水性环氧铝粉涂层/碳钢体系的腐蚀电化学行为   总被引:1,自引:0,他引:1  
应用电化学阻抗谱(EIS)和扫描振动电极技术(SVET)研究了碳钢基体上含人造缺陷的水性环氧铝粉涂层浸泡在3.5%NaCl溶液中的腐蚀电化学行为.结果表明,浸泡初期,涂层缺陷处为阳极活性区,涂层阻抗随时间延长逐渐降低,活性区逐渐扩展;之后,由于腐蚀产物的自修复作用使整个涂层/金属界面电化学反应活性降低,导致涂层阻抗快速增加.浸泡后期,由于腐蚀介质渗入到涂层/基体界面,出现了更多的阳极活性区,涂层产生破坏剥离.  相似文献   

2.
孔燕  张树永  李红娟 《化学学报》2004,62(17):1612-1616
通过在正十二硫醇自组装单层膜表面制备环氧树脂涂层的方法,在涂层/铜基体界面引入自组装界面层.采用X射线光电子能谱、电化学阻抗谱、阻抗-时间谱和相位角-时间谱等方法对硫醇自组装界面层及其对涂层腐蚀防护性能的影响进行了研究.结果表明,引入的自组装单层可极大地改善涂层的腐蚀防护性能.论文还对自组装单层改善涂层腐蚀防护性能的机理进行了探讨.  相似文献   

3.
铜在离子选择性涂层下腐蚀行为的阻抗谱研究   总被引:1,自引:0,他引:1  
王周成  辜志俊 《电化学》1997,3(3):271-286
用电化学交流阻抗技术研究了涂装不同离子造反性涂层的铜电极在3%NaCl溶液中的腐蚀行为,悄同涂装体系的阻抗谱特征,建立了相应的等 电路模型,由阻抗数据解析的结果,讨论了不同离子选择性涂层对铜的防蚀性能。  相似文献   

4.
WBE联合EIS技术研究缺陷涂层下金属腐蚀   总被引:2,自引:0,他引:2  
张伟  王佳  李玉楠  王伟 《物理化学学报》2010,26(11):2941-2950
用电化学阻抗谱(EIS)结合丝束电极(WBE)技术研究了缺陷涂层浸泡在3.5%(质量分数)NaCl溶液中的劣化过程.从浸泡开始到完好涂层鼓泡失效,缺陷涂层丝束电极阻抗响应一直是缺陷区电极腐蚀反应过程特征,而完好涂层的劣化过程和涂层下的腐蚀反应过程特征被"平均掉".根据电极表面的电流分布,结合阻抗谱技术实现了对表面任意局部阴极和阳极区阻抗测试.研究发现,浸泡开始时,缺陷涂层阴极电流和阳极电流均出现在缺陷区,随着腐蚀过程的发展,阳极电流仍然保持在缺陷区,但阴极电流逐渐向完好涂层下扩展.根据实验结果,对缺陷处和涂层下金属腐蚀反应发生发展的机理进行了深入讨论.  相似文献   

5.
通过Machu测试、电化学交流阻抗(EIS)和扫描电子显微镜(SEM)等方法研究了添加氧化铈对AZ91D镁合金表面富镁涂层防护性能的影响.氧化铈添加量较少(0.1%,w)时,对涂层耐蚀性无影响;添加量过多(3%)时,涂层耐蚀性降低;添加氧化铈颗粒为0.5%时,涂层的阻抗增大,涂层电容降低,对AZ91D镁合金基体的保护性能明显提高.尽管添加氧化铈不改变富镁涂层对AZ91D镁合金的保护机制,但可显著延长涂层的服役寿命.氧化铈能够降低纯镁颗粒的电化学反应活性,使镁粉腐蚀速率降低,阴极保护时间延长.添加一定量氧化铈后,也有利于涂层屏蔽性能提高,氧化铈能降低AZ91D镁合金表面阳极腐蚀电流密度,提高镁合金腐蚀电位,从而有利于富镁涂层发挥对镁合金基体的阴极保护作用.  相似文献   

6.
本文以Al和10%体积比Al2O3的混合粉末为原料,使用便携式低压冷喷涂设备,在Q235碳钢基体上喷涂了Al涂层. 测试涂层自腐蚀电位及动电位极化曲线,结合扫描电镜观察涂层表面及截面微观形貌,研究了低压冷喷涂Al涂层在海水中电化学腐蚀行为,并与高压冷喷涂和热喷涂铝涂层的耐蚀性比较. 结果表明,低压冷喷涂铝涂层结构较为致密,其耐蚀性比高压冷喷涂铝涂层的略低,而明显优于热喷涂铝涂层.  相似文献   

7.
渗铝钢在海水中的电化学行为研究   总被引:2,自引:0,他引:2  
梁成浩  魏君  路思  郑润芬 《电化学》2004,10(4):435-439
应用化学浸泡实验,电化学测试技术研究渗铝钢在海水中的电化学行为.试验表明,在海水中渗铝钢的腐蚀电位比20#钢的负,其阳极活性大于后者,在低电位下发生阳极溶解.20#钢和渗铝钢的腐蚀速率分别为5.80mg/dm2·d和3.36mg/dm2·d.渗铝钢在海水中具有优良的耐蚀性能是由于环境遮断和电偶保护的综合效果.其腐蚀产物含有氯离子,说明氯离子参与海水中的腐蚀过程,是导致腐蚀的主要原因.渗铝钢除了表层形成的Al、Fe化合物和致密、连续、具有高效防护作用Al的氧化物保护膜外,Al Fe合金层起到牺牲阳极的电化学保护作用.  相似文献   

8.
达克罗涂层的腐蚀动力学行为研究   总被引:7,自引:0,他引:7  
达克罗涂层以高耐蚀性、无废水排放、无氢脆等优良性能而成为表面处理行业的一项高新技术[1] 。这种涂层由微细的鳞片状金属锌和以三价铬氧化物为主的粘合物构成 ,并以膜层的整体铬酸盐化为基本特征。近年来 ,我们采用动电位扫描法、恒电流法和快速三角波等多种电化学测试方法对其腐蚀动力学行为进行了研究 ,分析达克罗涂层的高耐蚀性的成因 ;同时从腐蚀电化学角度探讨用硼酸部分取代铬酸配制处理液能明显改善涂层在淡水中的耐蚀性 的机制。1 实验部分1 1 处理液的配制和涂层的制备所用试剂包括 :铬酸酐 (AR) ,硼酸 (AR) ,二丙醇 (…  相似文献   

9.
AZ31和AZ61镁合金在模拟海水中的腐蚀电化学行为   总被引:2,自引:0,他引:2  
应用极化曲线、电化学阻抗谱方法研究了两种Mg-Al-Zn系合金——AZ31和AZ61在模拟海水中的腐蚀电化学行为.根据两种镁合金在浸泡过程中腐蚀介质pH值的变化以及扫描电子显微镜对合金微观金相组织和腐蚀形貌的观察,讨论了镁合金的腐蚀机理及合金元素Al的含量对镁合金耐蚀性能的影响.结果表明,AZ61镁合金具有比AZ31镁合金更好的耐蚀性能,其原因主要是AZ61镁合金中Al含量较高使合金的微观组织结构更有利于耐蚀性能的提高.  相似文献   

10.
钛及其合金具有良好的力学性能和生物相容性,被广泛地用作医用人工植入体.然而,钛植入体在人体内的生理环境中必然发生腐蚀,金属离子的溶出和积累可产生毒副作用.本文应用电化学方法对医用钛金属作表面改性,提高其生物活性,应用Tafel极化曲线和电化学阻抗(EIS)研究其耐蚀性能及腐蚀电化学行为.结果表明,在钛基TiO2纳米管阵列膜层上沉积构筑HA涂层之后,由于表面阻挡层的强化,TiO2涂层在Tyrode’s生理溶液中的耐蚀性有所提高.  相似文献   

11.
李玉楠  王佳  张伟 《电化学》2010,16(4):393
应用电化学阻抗谱(EIS)技术以对比法研究了浸泡在3.5%NaCl溶液中的铁基有机涂层在浸泡和干湿循环条件下的劣化过程.干湿循环实验步骤为12h浸泡和12h干燥(298 K、50%RH).结果表明,根据EIS响应特征,浸泡和干湿循环下的涂层劣化过程均可分为3个主要阶段:涂层渗水阶段,基底金属腐蚀发生阶段和基底金属腐蚀发展与涂层失效阶段.与单一浸泡过程相比,干湿循环明显加速了腐蚀反应的发生,但减缓了其渗水、腐蚀发展以及涂层失效劣化过程.根据实验结果,深入讨论了干湿循环加速涂层劣化和涂层下基底金属的腐蚀机理.  相似文献   

12.
5083铝合金在海水中的腐蚀电化学行为及活性氯影响研究   总被引:18,自引:0,他引:18  
采用动电位极化、循环极化和全浸腐蚀试验方法,研究了5083铝合金在静止海水中的腐蚀电化学性能以及活性氯的影响.结果表明,在本文设置的防污活性氯浓度范围(0.2~0.5mg/L)内,活性氯对铝合金的阴极和阳极电化学极化以及腐蚀行为没有明显影响,并可提高铝合金的耐点蚀能力,海水的pH值对铝合金的腐蚀具有显著的影响.该研究为海水中5083铝合金的防腐防污提供了依据.  相似文献   

13.
利用电化学阻抗(EIS)、扫描微参比技术(SRET)、接触角、粗糙度、附着力、盐雾等测试方法,研究了铝合金阳极氧化与贻贝黏附蛋白(MAP)/CeO2/硅烷γ-APS(MCA)表面复合修饰的腐蚀防护性能以及对改性聚氨酯涂层附着力和耐蚀性的影响。结果表明,MCA复合膜可抑制铝合金的腐蚀,并具有一定的自修复功能;阳极氧化和MCA表面复合修饰可为铝合金提供有效的早期腐蚀防护作用,且能提高铝合金表面粗糙度和润湿性,显著提升改性聚氨酯涂层在铝合金表面的附着力和耐蚀性,因而结合改性聚氨酯涂层和表面复合修饰可实现对铝合金长期有效的腐蚀防护。  相似文献   

14.
环氧/氟碳复合涂层失效过程的电化学阻抗谱研究   总被引:1,自引:0,他引:1  
用电化学阻抗技术研究了环氧富锌底漆、环氧云铁中间漆和氟碳面漆构成的多层复合涂层在四种不同腐蚀环境中的失效过程.涂层在四种环境中的失效速率按下列顺序降低:3.5%NaCl浸泡+紫外照射,45℃湿热环境,35℃盐雾试验,3.5%NaCl浸泡.尽管涂层在四种不同环境中失效速率差别很大,但不同环境中阻抗中频区的相角,尤其是10Hz频率的相角,与涂层的低频阻抗值变化趋势非常接近.由于中频区的相角可以快速测量,因此可以作为在工程现场定性评价涂层保护性能的参数.  相似文献   

15.
采用两步乳液聚合法制备丙烯酸酯-苯胺共聚乳液.通过红外光谱(FT-IR)、X射线衍射(XRD)、热重分析(TGA)和透射电镜(TEM)等表征手段对产物的结构进行了研究.将共聚乳液涂覆在Q235低碳钢表面,利用电化学交流阻抗谱(EIS)、塔菲尔(Tafel)曲线和平衡开路电位(OCP)考察共聚乳液涂层对Q235低碳钢的腐蚀防护性能.结果表明:丙烯酸酯与苯胺之间形成了化学键,丙烯酸酯乳液有效地起到了掺杂酸的作用;共聚乳液具有良好的成膜性;共聚乳液涂层具有较高的交流阻抗值(3.0×105Ω·cm2),降低了金属的腐蚀电流密度(10-8 A/cm2),显著提高了腐蚀电位(-0.44 V),防腐蚀性能较好.  相似文献   

16.
魏华  王秀通  高荣杰  李焰 《电化学》2005,11(3):314-318
应用线性极化电阻,极化曲线和电化学阻抗测量技术,研究了API Spec X60两种管线钢,即ERW(电阻焊管)和SML(无缝钢管)在中国东海长江口地区不同类型海泥中的电化学腐蚀行为.结果表明,SML管线钢的耐蚀性明显优于ERW管线钢,管线钢在海泥中的腐蚀行为主要受阴极去极化剂-氧的扩散控制.  相似文献   

17.
采用硅氢加成反应制备了2-(3,4-环氧环己基)乙基三乙氧基硅烷(ETEO),用ETEO对纳米SiO_2进行表面接枝得到新型硅基纳米SiO_2(ETEO-SiO_2),并制备环氧树脂/ETEO-SiO_2复合涂层.利用傅里叶变换红外光谱(FTIR)、氢核磁共振谱(~1H NMR)与X射线光电子能谱分析(XPS)对ETEO和ETEO-SiO_2进行了表征.场发射扫描电子显微镜(FESEM)观察到ETEO-SiO_2涂层横截面粗糙,ETEO-SiO_2具有良好分散性.接触角分析表明ETEO-SiO_2涂层疏水性提高.利用电化学阻抗实验与盐雾实验研究了复合涂层的防腐蚀性能,结果表明,添加ETEO-SiO_2纳米粒子后涂层的防腐蚀性能远优于纯环氧树脂和纳米SiO_2复合环氧树脂涂层,当ETEO-SiO_2纳米粒子添加量达到4%(质量分数)时,防腐蚀性能最佳.纳米SiO_2表面接枝ETEO后,ETEOSiO_2纳米粒子与环氧树脂基体之间的相容性增加,分散稳定性提高,涂层更加致密,减少了腐蚀介质所需的扩散通道并抑制腐蚀反应过程的进行,提高了复合涂层的防腐蚀性能.  相似文献   

18.
覆铜板在NaCl溶液中的腐蚀电化学行为   总被引:2,自引:0,他引:2  
应用线性极化、循环伏安(CV)及电化学阻抗谱(EIS)等电化学方法对覆铜板(CCL)和纯铜的腐蚀电化学行为进行了研究和比较. 结果表明, 覆铜板的耐蚀性弱于纯铜, 其阳极溶解过程与纯铜有所不同; 在较低电位下, CCL 以铜的氯化络合物的形式溶解, CuCl-2的扩散为该过程的控制步骤; 随着电位的升高, 腐蚀产物CuCl在电极表面形成疏松多孔的膜, Cl-在膜中的传输成为溶解过程的控制步骤. 电极表面CuCl 膜的消长过程是产生感抗弧的主要原因.  相似文献   

19.
阳极氧化AZ91D镁合金在氯化钠稀溶液中的腐蚀行为   总被引:1,自引:1,他引:0  
张丽君  张昭  张鉴清 《物理化学学报》2008,24(10):1831-1838
利用盐雾实验、极化曲线扫描、电化学阻抗谱和电化学噪声技术等电化学研究方法结合扫描电镜表面观测技术对AZ91D镁合金氧化膜在1%(w)氯化钠溶液中的耐蚀性能进行了评价. 结果表明, 氧化前后的镁合金腐蚀行为发生明显改变, 如未封孔的阳极氧化膜耐中性5%氯化钠盐雾试验时间超过200 h; 氧化后的镁合金自腐蚀电位明显正移, 点蚀诱导期延长; 阳极氧化膜的高频阻抗约为裸露镁合金的数千倍, 这些变化证明阳极氧化处理使镁合金获取了十分优异的耐蚀性能. 首次利用分形维数Df的变化规律初步描述氧化后AZ91D镁合金的腐蚀过程. 可以发现随着浸泡时间的延长, Df呈现出初期快速增长, 随后出现波动, 最后稍有降低的变化过程. 这种现象对应于氧化后AZ91D 镁合金在1%氯化钠溶液中腐蚀的三个阶段.  相似文献   

20.
龙萍  李庆芬  许立坤  薛丽莉  宋泓清 《化学学报》2012,70(10):1166-1172
测量了钌镧氧化物涂层的电化学阻抗谱(EIS), 结合循环伏安(CV)及扫描电子显微镜形貌分析, 研究了钌镧氧化物涂层阳极在3.5% NaCl 溶液中电化学表面结构及电化学行为. 在非析氯反应区间, 该涂层EIS 数据的最佳拟合等效电路是Rs(RctQdl), 在析氯反应区间, 其等效电路为Rs(RfQf)(RctWQdl). 高频段阻抗行为对应涂层的物理阻抗, 低频段对应涂层与溶液界面的电化学反应阻抗. 实验结果表明, 随着La 浓度增加, 氧化膜及双电层的伪电容增大, 且在La 含量30mol%时达到最大值, 与CV实验结果一致, 证明了加入La 能提高RuO2涂层的电催化活性. 但在析氯反应区间, 涂层氧化膜的导电性在含La 大于30 mol%之后迅速下降, 在低频段产生Warburg 阻抗, 与其表面钝化和特性吸附现象有关,这是导致含La 70 mol%时电催化活性急剧下降的原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号