首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
《Current Applied Physics》2010,10(3):813-816
Ag films were deposited on Al-doped ZnO (AZO) films and coated with AZO to fabricate AZO/Ag/AZO multilayer films by DC magnetron sputtering on glass substrates without heating of glass substrates. The best multilayer films have low sheet resistance of 19.8 Ω/Sq and average transmittance values of 61% in visible region. It was found that the highest figure of merit (FTC) is 6.9 × 10−4 Ω−1. For the dye-sensitized solar cell (DSSC) application, the multilayer films were used as transparent conductive electrode (multilayer films/ZnO + Eosin-Y/LiI + I2/Pt/FTO). The best DSSC based on the multilayer films showed that open circuit voltage (Voc) of 0.47 V, short circuit current density (Jsc) of 2.24 mA/cm2, fill factor (FF) of 0.58 and incident photon-to-current conversion efficiency (η) of 0.61%. It was shown that the AZO/Ag/AZO multilayer films have potential for application in DSSC.  相似文献   

2.
The temperature–dependent electrical resistivity ρ(T) in metallic and semiconducting phase of ZnO nanostructures is theoretically analysed. ρ(T) shows semiconducting phase in low temperature regime (140 K<T<180 K), shows an absolute minimum near 180 K and increases linearly with T at high temperatures (200 K<T<300 K). The resistivity in metallic phase is estimated within the framework of electron–phonon and electron–electron scattering mechanism. The contributions to the resistivity by inherent acoustic phonons (ρac) as well as high frequency optical phonons (ρop) were estimated using Bloch–Gruneisen (BG) model of resistivity. The electron–electron contributions ρe?e=BT2 in addition with electron–phonon scattering is also estimated for complete understanding of resistivity in metallic phase. Estimated contribution to resistivity by considering both phonons, i.e., ωac and ωop and the zero limited resistivity are added with electron–electron interaction ρe–e to obtain the total resistivity. Resistivity in Semiconducting phase is discussed with small polaron conduction (SPC) model. The SPC model consistently retraces the low temperature resistivity behaviour (140 K<T<180 K). Finally the theoretically calculated resistivity is compared with experimental data which appears favourable with the present analysis in wide temperature range.  相似文献   

3.
An advanced mask-less nanofabrication technique, focused electron beam-induced deposition (FEBID), has been employed on epitaxial Nb thin films to prepare ferromagnetic decorations in the form of an array of Co stripes. These substantially modify the non-patterned films’ superconducting properties, providing a washboard-like pinning potential landscape for the vortex motion. At small magnetic fields B ? 0.1 T, vortex lattice matching effects have been investigated by magneto-transport measurements. Step-like drops in the field dependencies of the films resistivity ρ(B) have been observed in particular for the vortex motion perpendicular to the Co stripes. The field values, corresponding to the middle points of these drops in ρ(B), meet the vortex lattice parameter matching the pinning structure’s period. These disagree with the results of Jaque et al. (2002) [11], who observed matching effects corresponding to the stripe width in Nb films grown on periodically distributed submicrometric lines of Ni.  相似文献   

4.
A study is made by TEM, XRD and by measuring electrical/magnetic properties, of growth mode and properties of Pt1−xNix alloy films deposited on MgO(0 0 1) at 250°C by dc-sputtering at 2.5–2.7 kV in Ar. A bias voltage Vs≤−160 V was applied to the substrate during deposition. It was confirmed that the Pt film was polycrystalline with the texture of Pt(1 1 1)/MgO(0 0 1) while the films of Pt0.14Ni0.86 and Pt0.19Ni0.81 were epitaxially grown with Pt–Ni(0 0 1)[1 0 0]/MgO(0 0 1)[1 0 0] similarly to the case of Ni/MgO(0 0 1). Thus the growth mode transformation between Pt–Ni(1 1 1)/MgO(0 0 1) and Pt–Ni(0 0 1)/MgO(0 0 1) may be induced at x less than 0.81 for Pt1−xNix alloy films. The temperature coefficient of resistance TCR from 100 to 300 K of Pt0.14Ni0.86 films was estimated to be 0.0044–0.0053 K−1 and saturation magnetization at 300 K to be 1.7–3.2 kG, respectively, while TCR of Pt films was estimated to be 0.0035–0.0048 K−1.  相似文献   

5.
Polycrystalline and epitaxial (1 0 0), (1 1 0), and (1 1 1)-oriented Ni3Pt, NiPt, and NiPt3 films were deposited over a range of growth temperatures from 80°C to 700°C. Films grown at moderate temperatures (200–400°C) exhibit growth-induced properties similar to Co–Pt alloys: enhanced and broadened Curie temperature, perpendicular magnetic anisotropy and large coercivity. As in Co–Pt, the magnetic properties suggest a clustering of Ni into platelets on the growth surface, as the films are being grown. Unlike Co–Pt, however, NiPt films exhibit a strong orientational dependence of anisotropy and enhanced Curie temperature, possibly resulting from different types of surface reconstructions which affect the growth surface.  相似文献   

6.
Hall effect and magnetoresistance Δρ/ρ(0) (MR) in the normal state have been measured on single crystals of Ba1?xKxFe2As2 and NdFeAsO1?xFx. Detailed analysis reveal the following conclusions: (1) For the parent phases of Ba1?xKx Fe2As2 and NdFeAsO1?xFx, large Hall effect and MR with strong temperature dependence were observed below a characteristic temperature corresponding to the antiferromagnetic/ structural transition. The field dependence of the Hall resistivity ρxy exhibits a non-linear behavior, which is accompanied by the violation of the B-square feature of the longitudinal magnetoresistivity Δρxx(B)/ρxx(0). A closer inspection further indicates that they are well related to each other and could be attributed to the multi-band effect or spin-related scattering. (2) The superconducting samples show much smaller Hall coefficient and MR in the normal state. The Hall coefficient shows a weaker temperature dependence compared to the parent phase, while the mean scattering rate 1/τH has a power-law like temperature dependence as 1/τH  Tn (n = 2–3). (3) For a Ba1?xKxFe2 As2 sample with Tc = 36 K, the field dependence of MR is complicated and the feature varies in different temperature regions. A drastic change of Δρ/ρ(0) was found between 80 K and 100 K, which corresponds very well to the maximum of the temperature derivative of the resistivity. This may be attributed to the spin-related scattering of electrons. (4) A comparison between the parent phase and the superconducting sample with Tc = 50 K in NdFeAsO1?xFx suggests that the electronic transport properties in the normal state cannot be easily understood with the simple multi-band model, while a picture concerning a suppression to the quasiparticle density of states at the Fermi energy is more reasonable.  相似文献   

7.
Effects of the introduction of a Pd/Si dual seedlayer on the microcrystalline structure and magnetic properties of [Co/Pd]n multilayered perpendicular magnetic recording media were investigated. The Pd/Si dual seedlayer was composed of a Pd upper seedlayer and a Si under seedlayer. The Pd upper seedlayer with a thickness of up to 10 nm markedly increased the coercivity of [Co/Pd]n multilayered media in the direction perpendicular to the film surface. The highest coercivity of 7.8 kOe was obtained for the [Co/Pd]10 medium with a Pd (10 nm)/Si (100 nm) dual seedlayer. The Pd upper seedlayer not only facilitated the formation of regular interfaces between the Co and Pd layers, but also reduced the thickness of the deteriorated initial layer in the [Co/Pd]n multilayer, resulting in enhancement of the magnetic anisotropy field. The [Co/Pd]n multilayered medium with the Pd/Si dual seedlayer exhibited weak intergranular exchange coupling between [Co/Pd]n grains, which led to excellent read–write characteristics.  相似文献   

8.
In thin layered Fe/Co (0 0 1), grown on MgO (0 0 1), both Fe and Co crystallize in the body-centered cubic (BCC) structure, as seen in a series of superlattices where the layer thickness of the components is varied from two to twelve atomic monolayers. These superlattices have novel magnetic properties as observed by magnetization and polarized neutron reflectivity measurements. There is a significant enhancement of the magnetic moments of both Fe and Co at the interfaces. Furthermore, the easy axis of the system changes from [1 0 0] for films of low cobalt content to [1 1 0] for a Co content exceeding 33%. No indication of a uniaxial anisotropy component is found in any of the samples. The first anisotropy constant (K1) of BCC Co is found to be negative with an estimated magnitude of 110 kJ/m3 at 10 K. In all cases, the magnetic moments of Fe and Co have parallel alignment.  相似文献   

9.
Pramod Bhatt  S.M. Yusuf 《Surface science》2011,605(19-20):1861-1865
Thin films of molecule-based charge transfer magnet, cobalt tetracyanoethylene [Co(TCNE)x, x ~ 2] consisting of the transition metal Co, and an organic molecule viz. tetracyanoethylene (TCNE) have been deposited by using physical vapor deposition method under ultra-high vacuum conditions at room temperature. X-ray photoelectron spectroscopy (XPS) technique has been used extensively to investigate the electronic properties of the Co(TCNE)x thin films. The XPS measurements show that the prepared Co(TCNE)x films are clean, and oxygen free. The stoichiometries of the films, based on atomic sensitive factors, are obtained, and yields a ~ 1:2 ratio between metal Co and TCNE for all films. Interestingly, the positive shift of binding energy position for Co(2p), and negative shifts for C(1s) and N(1s) peaks suggest a charge-transfer from Co to TCNE, and cobalt is assigned to its Co(II) valence state. In the valence band investigation, the highest occupied molecular orbital (HOMO) of Co(TCNE)x is found to be at ~ 2.4 eV with respect to the Fermi level, and it is derived either from the TCNE? singly occupied molecular orbital (SOMO) or Co(3d) states. The peaks located at ~ 6.8 eV and ~ 8.8 eV are due to TCNE derived electronic states. The obtained core level and valence band results of Co(TCNE)x, films are compared with those of V(TCNE)x thin film magnet: a well known system of M(TCNE)x type of organic magnet, and important points regarding their electronic properties have been brought out.  相似文献   

10.
We have studied the electrical and optical properties of Cu–Al–O films deposited on silicon and quartz substrates by using radio frequency (RF) magnetron sputtering method under varied oxygen partial pressure PO. The results indicate that PO plays a critical role in the final phase constitution and microstructure of the films, and thus affects the electrical resistivity and optical transmittance significantly. The electrical resistivity increases with the increase of PO from 2.4 × 10?4 mbar to 7.5 × 10?4 mbar and afterwards it decreases with further increasing PO up to 1.7 × 10?3 mbar. The optical transmittance in visible region increases with the increase of PO and obtains the maximum of 65% when PO is 1.7 × 10?3 mbar. The corresponding direct band gap is 3.45 eV.  相似文献   

11.
《Current Applied Physics》2010,10(3):904-909
An electrosynthesis process of hydrophilic polyaniline nanofiber electrode for electrochemical supercapacitor is described. The TGA–DTA study showed polyaniline thermally stable up to 323 K. Polyaniline nanofibers exhibit amorphous nature as confirmed from XRD study. Smooth interconnected fibers having diameter between 120–125 nm and length typically ranges between 400–500 nm observed from SEM and TEM analysis. Contact angle measurement indicated hydrophilic nature of polyaniline fibers. Optical study revealed the presence of direct band gap with energy 2.52 eV. The Hall effect measurement showed room temperature resistivity ∼3 × 10−4 Ω cm and Hall mobility 549.35 cm−2V−1 s−1. The supercapacitive performance of nanofibrous polyaniline film tested in 1 M H2SO4 electrolyte and showed highest specific capacitance of 861 F g−1 at the voltage scan rate of 10 mV/s.  相似文献   

12.
In order to study the Hall effect in pure and CNT-doped Y-123 polycrystalline samples, we have measured the longitudinal and transverse voltages at different magnetic field (0 ? 9 T) in the normal and vortex states. In the normal state, the Hall coefficient is positive and decreases with increasing temperature, and can be approximately fitted to RH = a + bT?1. We have found a sign reversal in the pure sample for the magnetic field of about 3 T, and double sign reversal of the Hall coefficient in the 0.7 wt% CNT-doped sample at about 3 and 5 T. The Hall resistivity in our samples depends on the pinning.  相似文献   

13.
Nanostructured Zn1−xMnxS films (0  x  0.25) were deposited on glass substrates by simple resistive thermal evaporation technique. All the films were deposited at 300 K in a vacuum of 2 × 10−6 m bar. All the films temperature dependence of resistivity revealed semiconducting behaviour of the samples. Hot probe test revealed that all the samples exhibited n-type conductivity. The nanohardness of the films ranges from 4.7 to 9.9 GPa, Young’s modulus value ranging 69.7–94.2 GPa.  相似文献   

14.
In this work, the pulsed electron beam deposition method (PED) is evaluated by studying the properties of ZnO thin films grown on c-cut sapphire substrates. The film composition, structure and surface morphology were investigated by means of Rutherford backscattering spectrometry, X-ray diffraction and atomic force microscopy. Optical absorption, resistivity and Hall effect measurements were performed in order to obtain the optical and electronic properties of the ZnO films. By a fine tuning of the deposition conditions, smooth, dense, stoichiometric and textured hexagonal ZnO films were epitaxially grown on (0001) sapphire at 700 °C with a 30° rotation of the ZnO basal plane with respect to the sapphire substrate. The average transmittance of the films reaches 90% in the visible range with an optical band gap of 3.28 eV. Electrical characterization reveals a high density of charge carrier of 3.4 × 1019 cm?3 along with a mobility of 11.53 cm²/Vs. The electrical and optical properties are discussed and compared to ZnO thin films prepared by the similar and most well-known pulsed laser deposition method.  相似文献   

15.
The dependence of structural and electrical properties of SnO2 films, prepared using spray pyrolysis technique, on the concentration of fluorine is reported. X-ray diffraction, FTIR and scanning electron microscope (SEM) studies have been performed on SnO2:F (FTO) films coated on glass substrates. Measured values of Hall coefficient and resistivity are reported. The 7.5 m% of F doped film had a resistivity of 15 × 10−4 Ω cm, carrier density of 18.7 × 1019 cm−3 and mobility of 21.86 cm2 V−1 S−1. The NiO film was coated on an FTO substrate and its electrochromic (EC) behavior was studied and the results are reported and discussed in this paper.  相似文献   

16.
Single gold nanowires with diameters ranging between 80 and 300 nm were fabricated by electrochemical deposition in single-pore membranes. The wires were contacted by means of a macroscopic planar electrode on each membrane side. The resistance-versus-diameter behavior was measured and is discussed considering finite-size effects, i.e., additional electron scattering both at the wire surface and at grain boundaries. Resistance-versus-temperature curves display characteristics like a bulk metal that shows a linear behavior down to about 70 K and finally approaches a limited value below 40–50 K with a residual resistivity ratio ρ300 K/ρ20 K≈2.5. The temperature-dependent resistivity data of wires with diameters larger than 200 nm fit well with the model of Mayadas and Shatzkes for grain-boundary scattering, thus confirming that surface scattering is negligible in this range.  相似文献   

17.
After postdeposition annealing in the temperature range of 500–800 K, a highly enhanced magneto-optical Kerr response up to a maximal value 300% of that before annealing, is observed for 1–2 ML ultrathin Co–Pt (1 1 1) films. With help of low energy electron diffraction and Auger electron spectroscopy, this enhancement of magneto-optical response is found to be correlated to the Co–Pt alloy formation at interface.  相似文献   

18.
Transparent conductive Al-doped zinc oxide (AZO) thin films were prepared by a sol–gel method and their structural, electrical and optical properties were systematically investigated. A minimum resistivity of 4.2 × 10−3 Ω cm was obtained for the 650 °C-annealed films doped with 1.0 at.% Al. All films had the preferential c-axis oriented texture according to the X-ray diffraction (XRD) results. Optical transmittance spectra of the films showed a high transmittance of over 85% in the visible region and the optical band gap of the AZO films broadened with increasing doping concentration.  相似文献   

19.
Optical interferometry techniques were used for the first time to measure the surface resistivity and surface conductivity of anodised aluminium samples in aqueous solution, without any physical contact. The anodization process (oxidation) of the aluminium samples was carried out in different sulphuric acid solutions (1.0–2.5% H2SO4), by the technique of electrochemical impedance spectroscopy (EIS), at room temperature. In the mean time, the real-time holographic interferometric was carried out to measure the thickness of anodised (oxide) film of the aluminium samples during the anodization process. Then, the alternating current (AC) impedance (resistance) of the anodised aluminium samples was determined by the technique of electrochemical impedance spectroscopy (EIS) in different sulphuric acid solutions (1.0–2.5% H2SO4) at room temperature. In addition, a mathematical model was derived in order to correlate between the AC impedance (resistance) and to the surface (orthogonal) displacement of the samples in solutions. In other words, a proportionality constant (surface resistivity or surface conductivity=1/surface resistivity) between the determined AC impedance (by EIS technique) and the orthogonal displacement (by the optical interferometry techniques) was obtained. Consequently the surface resistivity (ρ) and surface conductivity (σ) of the aluminium samples in solutions were obtained. Also, electrical resistivity values (ρ) from other source were used for comparison sake with the calculated values of this investigation. This study revealed that the measured values of the resistivity for the anodised aluminium samples were 2.8×109, 7×1012, 2.5×1013, and 1.4×1012  Ω cm in 1.0%, 1.5%, 2.0%, and 2.5% H2SO4 solutions, respectively. In fact, the determined value range of the resistivity is in a good agreement with the one found in literature for the aluminium oxide, 85% Al2O3 (5×1010 Ω cm in air at temperature 30 °C), 96% Al2O3 (1×1014  Ω cm in air at temperature 30 °C), and 99.7% Al2O3 (>1×1014 Ω cm in air at temperature 30 °C).  相似文献   

20.
Transport properties of (Cu, C)Ba2CuOx [(Cu, C)-1201] thin films have been characterized by in situ temperature dependence of resistivity, without breaking vacuum from the deposition to the measurement. In in situ transport properties measurements, the obtained results reveal that (Cu, C)Ba2CuOx films exhibit Tc > 20 K on the cased of conductivity at 290 K (σ[290 K]) > 4 × 102 S/cm and temperature coefficient of resistivity (TCR) > 1.5 × 10?3 K?1, and doping level of them should be in between under-doped and optimally-doped states. Their results suggest that there would be possible to further increases of Tc, and XPS data suggest that (Cu, C)-system should have the excellent dopability in their charge reservoir and the possibility of low anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号