首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Noncritically phase-matched (NCPM) fourth harmonic generation (FHG) of Nd:glass laser radiation in partially deuterated dihydrogen phosphate (KD*P) crystals has been demonstrated. At an Nd:glass laser wavelength of 1053.0 nm, NCPM FHG is achieved in 70% deuterated KD*P at a crystal temperature of 18.5±0.1 °C. Tuning the fundamental laser wavelength from 1052.9 to 1053.2 nm, FHG in KD*P is NCPM by changing the crystal temperature from 17.9 °C to 20.5 °C. When driven with 2.4 J of second harmonic radiation in a 3 ns flat-top pulse, corresponding to 1 GW/cm(2) 2ω drive intensity, 1.9 J of fourth harmonic radiation was generated in a 6 mm long KD*P crystal, yielding a second to fourth harmonic energy conversion efficiency of 79%.  相似文献   

2.
蒋建  常建华  冯素娟  毛庆和 《物理学报》2010,59(11):7892-7898
针对由YDFL和EDFL作为基频光源的QPM-DFG激光系统,利用PPMgLN晶体的色散关系及其温度特性,有效拓宽了QPM波长接受带宽.模拟结果表明,当采用1550和1060 nm波段的EDFL和YDFL分别作为DFG的信号和抽运光源时,对于相同的中红外波段,满足QPM条件所允许的抽运光波长变化范围远大于信号光波长变化范围.当固定信号光波长为1560 nm时,对于给定的晶体温度,1060 nm波段抽运光的QPM接受带宽超过17 nm,对应于中红外差频光带宽可约180 nm.采用多波长YDFL作为抽运源,单 关键词: 差频产生 准相位匹配 多波长中红外 光纤激光器  相似文献   

3.
In this paper, the wide difference frequency generation (DFG) tuning characteristics around 3.4 μm are investigated by using the index dispersion property of PPLN. With a ytterbium doped fiber laser (YDFL) and an erbium doped fiber laser (EDFL) as the fundamental light sources, our simulation results show that the quasi-phase matching (QPM) wavelength acceptance bandwidth (BW) for the pump is much larger than that for the signal. Although the positions of the broadened QPM pump bands vary with the poling period and the signal wavelength, the corresponding idler tuning ranges center around 3.4 μm. With a signal wavelength of 1.57 μm, an idler tuning range of greater than 170 nm is experimentally obtained in the 30 uniform grating PPLN. When the signal wavelength and the poling period are respectively changed to 1.55 and 29.50 μm, wide DFG tuning operations around 3.4 μm are also achieved with the crystal temperature adjusted to adapt the change.  相似文献   

4.
We investigated angular tuning of quasi-phase-matching (QPM) second-harmonic generation (SHG), in order to extend the tunable range of QPM and to combine the advantages of QPM and birefringence phase-matching. The direction of the input fundamental wave vector was detuned from the QPM grating vector along the crystallographic Z-axis of a periodically-poled lithium niobate (PPLN) crystal in the XY- and XZ-planes. A?larger tuning range of SHG was obtained for the detuning in the XZ-plane, continuously shifting the QPM peak of the fundamental wavelength from 1524 to 1595?nm by changing the detuning angle from 0° (parallel to X-axis as conventional QPM) to 23.2°.  相似文献   

5.
《Physics letters. A》2001,281(1):34-38
A concept of multistep cascading is applied to the problem of fourth-harmonic generation (FHG) in a single quadratic crystal, and a new model of parametric wave mixing is analyzed in detail. Important applications to the optical frequency division and efficient FHG as well as the realization of the double-phase-matching multistep cascading processes in engineered QPM structures with phase-reversal sequences are also suggested.  相似文献   

6.
We demonstrate the use of an aperiodic quasi-phase-matching (QPM) grating to generate second-harmonic pulses that are stretched or compressed relative to input pulses at the fundamental frequency. We frequency doubled an externally chirped erbium-doped fiber laser generating 17-ps (FWHM) pulses at 1560nm to produce near-transform-limited 110-fs (FWHM) pulses at 780nm by use of a 5-cm-long lithium niobate crystal poled with a QPM grating chirped from an 18.2- to a 19.8-microm period.  相似文献   

7.
Collinear broadband optical parametric generation (OPG) using periodically poled lithium niobate (PPLN) crystals were designed and experimentally demonstrated with the quasi-phase matching (QPM) periods of 21.5, 24.0, and 27.0 μm. The broad gain bandwidth was accomplished by choosing a specific set of the period and the pump wavelength that allows the group velocities of the signal and the idler to match close to the degeneracy point. OPG gain bandwidth and also the spectral region could be controlled by proper design of QPM period and pump wavelength. The total OPG gain bandwidth of 600, 900, and 1200 nm was observed for the PPLN devices with QPM periods of 21.5, 24.0, and 27.0 μm, respectively. We have also observed multiple color visible generation whenever the OPG spectrum was significantly broad. From the visible peaks of the three PPLN samples, it is found that broad gain bandwidth is crucial in the temperature-insensitive collinear simultaneous RGB generation from a single crystal.  相似文献   

8.
高士明 《光子学报》2007,36(5):820-824
理论研究了周期极化铌酸锂晶体中通过自发参量下转换产生的纠缠双光子的波长管理方法.简并自发参量下转换产生的单色偏振纠缠双光子的波长,可以通过调整晶体的极化周期或工作温度自由地调节,特别是在加工好的晶体中极化周期是确定的,因而调整晶体的工作温度更加便捷.对于双色偏振纠缠双光子来说,不需改变入射的泵浦光以及晶体的极化结构,仅通过调节晶体的工作温度就可以实现o光光子和e光光子波长的严格交换.  相似文献   

9.
Wang Z  Yang F  Zhang G  Bo Y  Liu S  Xie S  Xu Y  Zong N  Li F  Liu B  Xu J  Peng Q  Zhang J  Cui D  Wu Y  Xu Z 《Optics letters》2012,37(12):2403-2405
We demonstrate a high-power UV 278 nm laser by fourth-harmonic generation (FHG) of a 1112 nm Nd:YAG laser in a nonlinear optical (NLO) crystal CsB3O5 (CBO) for the first time, to our best knowledge. A 30 W level diode-pumped Q-switched Nd:YAG laser at 1112 nm with beam quality factor M2=1.2 was used as the fundamental light source at a pulse width of 500 ns. With an LiB3O5 crystal, the 1112 nm laser was first frequency-doubled to 556 nm with an average output power of 13.5 W. It was then frequency doubled again in a CBO crystal to obtain the FHG output at 278 nm. The maximum average output power of the 278 nm laser is up to 1.5 W. The results demonstrated that CBO crystal is a promising NLO material for UV high-power lasers below 300 nm.  相似文献   

10.
研究了基于级联二阶非线性的铌酸锂波导全光波长变换器的特性.首先从耦合模方程出发,比较了数值分析结果与小信号近似分析的结果.其次在数值分析基础上,分析了铌酸锂晶体的温度变化导致相应基频光波波长与极化反转光栅周期的变化关系.最后分析了在不同相互作用长度下,转换的光波功率与有效基频光波波长带宽、温度调谐带宽、极化反转光栅周期带宽等关系,以对全光波长变换器件进行优化设计 关键词: 级联二阶非线性 波长变换 准位相匹配 铌酸锂光波导  相似文献   

11.
根据准相位匹配原理,对钼酸钆晶体用于准相位匹配倍频过程的周期性畴结构进行了设计,当入射基频光为l.064pm时,所需的钼酸钆晶体畴结构周期为5.54μm。利用外电场极化,当外电场为2.5kV/mm时,钼酸钆晶体的畴结构反转时间tc=500~600μs。当外电场脉冲幅值为2.5kV/mm、脉冲延续时间t=0.6~0.8tc时,在钼酸钆晶体中制备得到了周期畴结构。当Nd:YAG纳秒激光器输出准连续功率为7~10mW的l.064μm激光通过具有周期畴结构的样品时,获得了0.532μm的倍频光输出。  相似文献   

12.
The frequency doubling of femtosecond pulses from an Yb-doped fiber laser source was demonstrated in a PPKTP waveguide fabricated by femtosecond laser direct writing. The PPKTP waveguide contains a fixed period of 8.9 μm and the feomtosecond fundamental pulses have a central wavelength of 1044 nm. A maximum SHG power of 406 mW was produced, yielding a conversion efficiency of 5.6%. Numerical simulations were carried out to investigate the property of frequency doubling for femtosecond pulses. The results show that the SHG process proceeds even the quasi-phase-matching (QPM) condition is not well satisfied, which is significantly different from that of “long” pulses or CW light and is accorded with the experimental results.  相似文献   

13.
The tuning properties for the mid-IR DFG laser based on uniform grating PPLN have been investigated with tunable YDFL and EDFL fundamental lights. Our results show that, for a fixed crystal temperature, the idler tunable range is less than 10 nm when the EDFL is tuned. Although the pump may be allowed to be tuned in its two QPM acceptance bands, the idler tunable range is still narrow for a fixed temperature. By optimizing the crystal temperature, however, the two pump QPM acceptance bands may be overlapped to form one broadband QPM band, which may be used to increase the idler tunable range to 175 nm near 3.4 μm region. The positions of the single signal and the two separate pump QPM acceptance bands can be continuously moved by adjusting the temperature, which may also be used for enhancing the idler tuning range. By tuning the EDFL while adjusting the temperature, a whole combined idler tuning range between 2.98 and 3.78 μm was experimentally obtained with three fixed pump wavelengths of 1.05, 1.08 and 1.11 μm. By tuning the YDFL in the two separate QPM acceptance bands, a tuning range of 690 nm has been demonstrated with only one fixed signal wavelength of 1.58 μm.  相似文献   

14.
We report on the experimental investigation and theoretical analysis of a nanosecond pulse high power ultraviolet(UV) 278 nm laser by fourth-harmonic generation(FHG) of a 1112-nm Nd:YAG amplifier in LiB_3O_5(LBO) and CsB_3O_5(CBO) crystals. The UV laser delivers a maximum average power of 10.3 W at 278 nm with peak power of 36.8 k W under input pump power of 41 W at 556 nm. This is, to the best of our knowledge, the highest output power at the specific UV wavelength of 278 nm. We also performed the theoretical investigation on the FHG with a model in the Gaussian approximation of both spatial and temporal profiles, especially accounting for the two-photon absorption effect in CBO crystal for the first time. The average output power, pulse width, and beam spatial distribution of the UV laser were simulated. The theoretical calculations are in close agreement with the experimental results.  相似文献   

15.
In this paper we use the coupled mode analysis to study nonlinear phase shifts of the fundamental beam caused by cascaded second order nonlinear effects in the Quasi Phase Matched Cerenkov (QPMC) configuration in waveguides. Under the no-pump depletion approximation which is valid for low conversion efficiencies, we obtain the nonlinear phase shift as a function of length of interaction and grating period. It is observed that the nonlinear phase shift of the fundamental beam can be maximized by choosing a grating period for which the phase matched second harmonic radiation mode is radiated parallel to the film-substrate interface, i.e., for zero Cerenkov angle. Although the phase shifts are smaller than in the case of all guided geometry, QPM Cerenkov configuration is expected to have greater tolerance towards various waveguide parameters and the fundamental wavelength.  相似文献   

16.
周期域反转铌酸锂可调谐波长转换器的皮秒脉冲实验   总被引:1,自引:0,他引:1  
王健  孙军强  孙琪真 《光学学报》2006,26(10):453-1458
实验研究了周期域反转铌酸锂光波导级联和频与差频二阶非线性效应(cSFG/DFG)皮秒脉冲间的可调谐波长转换。信号光采用重复频率为40 GHz,脉宽为1.57 ps的脉冲信号。当输入信号光和第一个控制光波长分别为1554.4 nm和1532.5 nm时,通过调节第二个控制光波长由1550.5 nm到1541.0 nm,输出信号光波长可从1536.0 nm调谐至1545.2 nm。当输入信号光波长改变时,通过改变第一个控制光波长以满足和频过程的准相位匹配条件,同时调节第二个控制光波长可以实现输出信号光波长的可调谐。实验中利用两个窄带可调谐滤波器有效抑制了掺铒光纤放大器引入的放大自发辐射噪声,同时观察到了波长下转换和波长上转换。  相似文献   

17.
介绍了基于准相位匹配周期极化反转铌酸锂光波导的和频与差频(SFG DFG)级联型全光波长转换技术的基本原理.计算了SFG DFG级联型波长转换的转换效率,分析了抽运光功率以及两个抽运光之间的间距对转换效率的影响,抽运光功率越大,转换效率越高;转换效率随着间距的增大先增大后减小.单抽运调节时的抽运带宽为0.5 nm,同时对信号光脉冲还有压缩作用,压缩比是0.68.  相似文献   

18.
Mizuuchi K  Ohta H  Yamamoto K  Kato M 《Optics letters》1997,22(16):1217-1219
Theoretical and experimental analyses of second-harmonic generation (SHG) with a high-index-clad waveguide are reported. It was found that confinement of the propagation modes and the overlap between the fields of fundamental and second-harmonic waves could be increased in this waveguide. This structure was achieved in an x-cut MgO:LiNbO (3) quasi-phase-matched (QPM) waveguide by use of Nb(2)O(5) as a cladding layer. With the QPM SHG device, harmonic blue light of 5.5 mW at the 434-nm wavelength was generated with a normalized conversion efficiency of 1200%/W cm(2).  相似文献   

19.
In this paper, we have studied the characteristics of second-order nonlinear interactions with band-overlapped type-I quasi-phase-matching (QPM) second harmonic generation (SHG) and sum-frequency generation (SFG), and predicted a blue-shift with a band-narrowing of their bands and a sunken response in the SFG curve, which are due to the phase-matching-dependent competition between band-overlapped SHG and SFG processes. This prediction is then verified by the experiment in an 18-mm-long bulk MgO-doped periodically poled lithium niobate crystal (MgO:PPLN) and may provide the candidate solution to output controlling for flexible broadcast wavelength conversion, channel-selective wavelength conversion and all-optical logic gates by cascaded QPM second-order nonlinear processes.  相似文献   

20.
Ridge waveguides were fabricated using an external field, a precision lapping machine and neutron loop discharge (NLD) in magnesium-oxide-doped lithium niobate. The measured quasi-phase-matching (QPM) wavelength of the second-harmonic generation (SHG) in a 30 mm long periodically poled magnesium-doped lithium niobate (PPMgLN) ridge waveguide which has a domain period of 6.8 μm is about 532 nm. A fabricated periodically poled magnesium-doped lithium niobate ridge waveguide was duty cycle of 51.9 ± 2.83% and demonstrated second-harmonic generation. By using this periodically poled magnesium-doped lithium niobate ridge waveguide, highly effective, low-cost optical devices with high power or short wavelength can be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号