首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
压力传感器性能易受温度变化的影响,从而增加了测量结果的误差。文中通过对压力传感器工作原理及结构的介绍,理论分析了影响压力传感器温度特性的因素,并建立一套压力传感器变温校验系统,进而通过实验说明了温度变化对压力传感器信号输出的影响。同时,也对目前国内在低温环境下压力传感器的应用及研究情况进行了介绍。  相似文献   

2.
针对光纤法布里-珀罗(F-P)压力传感器,建立了考虑热应力和残余气压的F-P腔长变化模型,进行了热应力和残余气压对传感器温度性能影响的理论分析。分析表明,热应力和残余气压的引入使F-P腔长改变量与温度的线性关系发生了变化,在外界施加100 k Pa压力,当腔内残余气压小于0.87 k Pa时,热应力起主要影响作用;当腔内残余气压大于0.87 k Pa时,残余气压起主要影响作用。制作了三种不同残余气压的光纤F-P压力传感器,在-20℃~70℃温度范围进行了实验研究,结果显示测量的腔长及其温度灵敏度随温度变化关系与理论分析基本一致。  相似文献   

3.
针对光纤法布里-珀罗(F-P)压力传感器,建立了考虑热应力和残余气压的F-P腔长变化模型,进行了热应力和残余气压对传感器温度性能影响的理论分析。分析表明,热应力和残余气压的引入使F-P腔长改变量与温度的线性关系发生了变化,在外界施加100 k Pa压力,当腔内残余气压小于0.87 k Pa时,热应力起主要影响作用;当腔内残余气压大于0.87 k Pa时,残余气压起主要影响作用。制作了三种不同残余气压的光纤F-P压力传感器,在-20℃~70℃温度范围进行了实验研究,结果显示测量的腔长及其温度灵敏度随温度变化关系与理论分析基本一致。  相似文献   

4.
采用了激光干涉法测量弹性模量,应用光电传感器检测条纹的明暗交替变化,增加了温度传感器监测环境的温度变化,用注水的方法改变碳钢丝上的拉力,并用压力传感器进行测量,获得了精度较高的测量结果.  相似文献   

5.
刘天沐  江毅  崔洋 《光子学报》2020,49(4):115-122
提出了一种在高温环境下同时测量温度和气压的光子晶体光纤温度压力传感器.在普通单模光纤和光子晶体光纤之间熔接一段空心光纤构成干涉结构.空心光纤段构成非本征法布里-珀罗干涉仪,利用光子晶体光纤的微孔与外界相通,通过气体折射率变化来测量环境中的气压变化;光子晶体光纤段构成本征法布里-珀罗干涉仪,利用热膨胀效应和热光效应来测量环境中的温度.传感器的解调通过自制的白光干涉解调仪实现,实验通过测量腔长得到被测环境的温度和气压.在不同温度和气压环境下,对腔长分别为306μm和1535μm的温度压力光纤传感器进行连续测量.实验结果表明,传感器能够在28~800℃的温度下和0~10 MPa的气压下稳定工作,测量范围内温度灵敏度可达17.4 nm/℃,压力灵敏度随温度增加而降低,在28℃时可达1460.5 nm/MPa.  相似文献   

6.
针对硅酸镓镧声表面波压力传感器,提出了一种温度和压力的多参数解耦方法。理论上采用有限元方法与微扰理论结合,计算传感器在不同温度、压力下频率响应。根据计算结果,构造出传感器温度与压力的解耦公式。以一种基于LGS(0°,0°,100°)点压力式SAW传感器为例,理论计算得到其温度与压力解耦公式的具体参数,同时与在-55℃-125℃,0-1 MPa范围内的实验测试结果对比。理论分析和实验测试结果基本吻合,验证了温度压力多参量解耦方法的正确性。   相似文献   

7.
高灵敏度双折射光纤压力传感器   总被引:2,自引:0,他引:2  
本文报道了一种高灵敏度双折射光纤压力传感器.它的结构简单,环境温度的变化几乎不影响它的灵敏度.压力温度灵敏度比约为53K·bar~(-1).它的温度灵敏度只是“熊猫”光纤的1/7.5.  相似文献   

8.
提出并制作了一种基于多芯光纤与单模光纤错位构成的马赫-曾德尔干涉仪,将其与光纤布喇格光栅级联,形成的全光纤传感系统可实现横向压力和温度双参量同时测量.马赫-曾德尔干涉仪是利用多芯光纤和单模光纤的模场不匹配而发生模间干涉,当外界横向压力直接作用在多芯光纤内部光场,干涉仪具有较高的灵敏度.实验结果表明:马赫-曾德尔干涉仪压力灵敏度为28.57nm/(N·mm~(-1)),线性度为0.997,而光纤布喇格光栅在一定范围内对压力变化不敏感;马赫-曾德干涉仪和光纤布喇格光栅对温度变化都具有较高的线性度,温度灵敏度分别为56.1pm/℃和11.3pm/℃.对于分辨率为0.02nm的光谱仪,传感器可实现的压力和温度测量分辨率分别为7.0×10~(-4)N/mm和0.03℃.马赫-曾德尔干涉仪的透射谱和光纤布拉光栅的谐振峰对横向压力和温度的变化有不同的光谱响应,利用光谱仪对传感器的透射谱实时监测,方便地实现了压力与温度双参量的测量.该传感器结构简单,灵敏度高,可用于不同领域的压力传感.  相似文献   

9.
针对传统液压系统检测中存在的传感器功能单一、体积较大、测量精度不高等问题,提出一种光纤光栅复合传感器.该传感器以一体化的靶片式流量传感结构为基础,融合光纤光栅压力和温度传感器,可以实现对液压系统流量、压力和温度的同时测量.在对各参数传感模型理论分析的基础上,对传感器的结构进行设计,并制作了传感器实物.利用液压综合试验系统等设备对传感器进行了性能测试和参数标定,得到其流量灵敏度为0.049L/s,压力灵敏度为28.4pm/Mpa,温度灵敏度为14.9pm/℃,验证了传感器设计的合理性.同时,传感器的温度测量功能可在流量和压力测量中作为参考,克服温度的交叉敏感效应,提高传感器的环境适应能力.  相似文献   

10.
采用压力传感器和温度传感器,通过数据接口由计算机实时采集数据并进行处理,观察到气体的热力学过程的状态变化,测得了氧气的摩尔热容量CV随着温度的变化.结果表明氧气的CV随温度的变化有一突变,这与能量均分定理所描述的基本一致,氧气的振动自由度被冻结的温度在240K左右.  相似文献   

11.
系统运行时外部参数变化将引起系统各内部参数变化,本文通过改变外部参数冷却水流量研究内部关键参数变化趋势。实验结果表明:随着冷却水的流量增加,压比减少,气体冷却器出口温度和排气压力降低,制热量和制热系数增加。在此基础上,通过调节外部参数研究气体冷却器出口温度以及蒸发温度对系统性能的影响。结果表明:随着蒸发温度的升高,制热...  相似文献   

12.
Multilayer ultrasonic transducers are widely being used for high power applications. In these applications, typical Langevin/Tonpilz structures without any adhesive bondings however have the disadvantage of limited bandwidth. Therefore adhesively-bonded structures are still a potential solution for this issue. In this paper, two-layer piezoelectric ceramic ultrasonic transducers with two different adhesive bondlines were investigated comparing to a single-layer transducer in terms of loss effects during operation with excitation signals sufficient to cause self-heating. The theoretical functions fitted to the measured time–temperature dependency data are compared with experimental results of different piezoelectric transducers. Theoretical analysis of loss characteristics at various surface displacements and the relationship with increasing temperature are reported. The effects of self-heating on the practical performance of multilayer ultrasonic transducers with adhesive bondlines are discussed.  相似文献   

13.
One of the important factors through food manufacturing is hygienic management. Thus, food manufactures prove their hygienic activities by taking certifications like a Hazard Analysis and Critical Control Point (HACCP). This concept also applies to food monitoring. Acoustical measurements have advantage for other measurement in food monitoring because they make it possible to measure with noncontact and nondestructive. We tried to monitor lactic fermentation of yogurt by a probing sensor using a pair of acoustic transducers. Temperature of the solution changes by the reaction heat of fermentation. Consequently the sound velocity propagated through the solution also changes depending on the temperature. At the same time, the solution change its phase from liquid to gel. The transducers usage in the solution indicates the change of the temperature as the change of the phase difference between two transducers. The acoustic method has advantages of nondestructive measurement that reduces contamination of food product by measuring instrument. The sensor was inserted into milk with lactic acid bacterial stain of 19 degrees C and monitored phase retardation of propagated acoustic wave and its temperature with thermocouples in the mild. The monitoring result of fermentation from milk to Caspian Sea yogurt by the acoustic transducers with the frequency of 3.7 MHz started to show gradient change in temperature caused by reaction heat of fermentation but stop the gradient change at the end although the temperature still change. The gradient change stopped its change because of phase change from liquid to gel. The present method will be able to measure indirectly by setting transducers outside of the measuring object. This noncontact sensing method will have great advantage of reduces risk of food contamination from measuring instrument because the measurement probes are set out of fermentation reactor or food containers. Our proposed method will contribute to the hygienization for the food manufacture industry.  相似文献   

14.
New clinical concepts in lithotripsy demand small shock heads. Reducing the size of piezoelectric shock heads will only be possible if the pressure generated at the surface of each transducer can be increased so that the total pressure at the focus remains very high. We propose for the first time to increase the pressure without increasing the transducer voltage by using sandwiched transducers, which are a combination of several stacked transducers. When excited at appropriate time intervals, the pressure waves generated by each one reinforce when they reach the load. This new technique has been successfully tested. A pressure of 2.5 MPa was generated with two stacked, 5 mm-thick 1-3 piezocomposite transducers operating at an excitation voltage of 8 kV. No transducer damage was detected after 10(6) shocks, which corresponds approximately to the treatment of 500 patients.  相似文献   

15.
针对一种新型水下气液两相冲压发动机,综合考虑了湍流效应、气液两相之间的拖曳作用及传热与传质,利用计算流体力学方法研究了气液两相冲压发动机内流场的流动特性随发动机工作条件的变化规律,重点研究了气蚀效应对发动机工作性能的影响.主要结论为:当航行速度大于32 m/s,气液两相冲压发动机入口附近会产生气蚀并造成严重的总压损失,导致扩张段下游产生流动分离,此时发动机无法产生正推力;通过增大气体质量流率,气液两相冲压发动机内流场的压力将会随之升高,气蚀效应被抑制;提高注入发动机气体的温度,发动机的推力及比冲均增大,但是发动机效率急剧降低.   相似文献   

16.
Richard C  Lee HS  Guyomar D 《Ultrasonics》2004,42(1-9):417-424
This paper deals with the emission performance of 1-3 piezoelectric composite power transducers made with a hard PZT (Navy III) and epoxy resins with a high glass-rubber transition temperature. Following the "dice and fill" technique, various composite transducers with 30 and 50% PZT volume fractions were fabricated with an air backing and no front matching layer with resonance operating frequencies around 500 kHz. The transducers were first evaluated under isothermal conditions, with a low emission duty cycle. Efficiencies as high as 95% were monitored as a function of the instantaneous input power up to a 60 W/cm(2) density. The effect of the polymer matrix mechanical losses and the fabrication conditions is then discussed. For the transducer thermal stability, the case of long duty cycle or continuous emission was considered in a second evaluation. In this case the transducer working temperature and axial radiated pressure were monitored as functions of the input power density up to 40 W/cm(2). It is shown that the transducer efficiency and working temperature were strongly dependent on the type of resin used but also on the PZT material, even for hard PZT compositions. A composite transducer configuration with strongly improved thermal stability was investigated demonstrating a working temperature higher than 90 degrees C and an extended power range (30-40 W/cm(2)). The composite thermal breakdown mechanism was analyzed and the effect of the curing-induced thermo-mechanical stresses on the PZT mechanical losses was considered in relation to the composite working temperature. Measurements of the composite mechanical losses versus the temperature were obtained and related to the variation of the PZT mechanical losses with the stresses due to the composite transducer temperature change. It is found that the thermally induced stress can strongly influence the PZT ceramic mechanical losses and that it can be the reason for a thermal breakdown taking place at a temperature much lower than the epoxy resin transition.  相似文献   

17.
The application of functionally graded material (FGM) concept to piezoelectric transducers allows the design of composite transducers without interfaces, due to the continuous change of property values. Thus, large improvements can be achieved, as reduction of stress concentration, increasing of bonding strength, and bandwidth. This work proposes to design and to model FGM piezoelectric transducers and to compare their performance with non-FGM ones. Analytical and finite element (FE) modeling of FGM piezoelectric transducers radiating a plane pressure wave in fluid medium are developed and their results are compared. The ANSYS software is used for the FE modeling. The analytical model is based on FGM-equivalent acoustic transmission-line model, which is implemented using MATLAB software. Two cases are considered: (i) the transducer emits a pressure wave in water and it is composed of a graded piezoceramic disk, and backing and matching layers made of homogeneous materials; (ii) the transducer has no backing and matching layer; in this case, no external load is simulated. Time and frequency pressure responses are obtained through a transient analysis. The material properties are graded along thickness direction. Linear and exponential gradation functions are implemented to illustrate the influence of gradation on the transducer pressure response, electrical impedance, and resonance frequencies.  相似文献   

18.
Nikolov SI  Jensen JA 《Ultrasonics》2000,37(10):667-671
In the last few years, the efforts of many researchers have been focused on developing 3D real-time scanners. The use of 2D phased-array transducers makes it possible to steer the ultrasonic beam in all directions in the scanned volume. An unacceptably large amount of transducer channels (more than 4,000) must be used, if the conventional phased array transducers are extrapolated to the 2D case. To decrease the number of channels, sparse arrays with different aperture apodization functions in transmit and receive apertures have to be designed. The design is usually carried out in 1D, and then transferred to a 2D rectangular grid. In this paper, five different 2D array transducers have been considered and their performance was compared with respect to spatial and contrast resolution. An optimization of the element placement along the diagonals using vernier arrays is suggested. The simulation results of the ultrasound fields show a decrease in the grating-lobe level of 10 dB for the diagonally optimized 2D array transducers compared to the previously designed 2D arrays which did not consider the diagonals.  相似文献   

19.
低压离心压缩系统喘振发生过程的实验观察   总被引:1,自引:0,他引:1  
在一离心压缩系统喘振实验台上,通过系统各位置及沿叶轮出口圆周上压力波动进行的动态测量,对进入及退出瑞振时的瞬态特性进行了实验观察.实验发现系统的喘振首先发生在储气容腔内,并由下游向上游发展,在此过程中喘振幅度从容腔至进口管呈减小的趋势,且发生时间也逐渐落后.此外,还对喘振的形成和退出过程及其相应特性也进行了观察.  相似文献   

20.
带压液化天然气流程中二氧化碳晶体析出现象初探   总被引:3,自引:2,他引:1  
带压液化天然气(PLNG)是在较高压力下(1~2MPa)液化并储存的天然气,对应的液化温度约-100~-120℃。较高的液化温度大大增加了LNG中CO2的溶解度,使得天然气液化流程有可能去掉占地很大的CO2预处理装置。不同条件下带压液化天然气中CO2晶体析出现象的研究是PLNG技术的基础。借助HYSYS软件,初步分析了天然气组分及PLNG储存温度对CO2晶体析出温度和溶解度的影响。结果表明,CO2和乙烷的含量对CO2析出温度有较大的影响,析出温度随着CO2浓度的增大而增大,而随乙烷含量的增大而降低;而氮含量对析出温度的影响较小。此外,随着PLNG储存温度的降低,二氧化碳溶解度也逐渐降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号