首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 791 毫秒
1.
[Re2(Ala)4(H2O)8](ClO4)6 (Re=Eu, Er; Ala=alanine) were synthesized, and the low-temperature heat capacities of the two complexes were measured with a high-precision adiabatic calorimeter over the temperature range from 80 to 370 K. For [Eu2(Ala)4(H2O)8](ClO4)6, two solid–solid phase transitions were found, one in the temperature range from 234.403 to 249.960 K, with peak temperature 243.050 K, the other in the range from 249.960 to 278.881 K, with peak temperature 270.155 K. For [Er2(Ala)4(H2O)8](ClO4)6, one solid–solid phase transition was observed in the range from 270.696 to 282.156 K, with peak temperature 278.970 K. The molar enthalpy increments, ΔHm, and entropy increments,ΔSm, of these phase transitions, were determined to be 455.6 J mol−1, 1.87 J K−1 mol−1 at 243.050 K; 2277 J mol−1, 8.43 J K−1 mol−1 at 270.155 K for [Eu2(Ala)4(H2O)8](ClO4)6; and 4442 J mol−1, 15.92 J K−1 mol−1 at 278.970 K for [Er2(Ala)4(H2O)8](ClO4)6. Thermal decompositions of the two complexes were investigated by use of the thermogravimetric (TG) analysis. A possible mechanism for the thermal decomposition is suggested.  相似文献   

2.
The Gibbs energy of formation of IrO2(s) has been measured by means of oxygen dissociation pressure measurements, and by EMF measurements using ZrO2 (+ CaO) as the solid electrolyte. In addition, high-temperature enthalpy increments of IrO2 have ben measured from 416 to 940 K using a drop calorimeter. A “third law” evaluation of the experimental results and data from literature has been made. For the enthalpy of formation of IrO2(s) the value ΔH°f (298.15 K) - −(59.60 ± 0.03) kcal mole−1 has been selected. The thermodynamic functions of IrO2(s) have been calculated in the temperature range 298–1200 K.  相似文献   

3.
F.R. Sale 《Thermochimica Acta》1979,30(1-2):163-171
The heat capacities of the tungsten oxides WO3, W20O58, W18O49 and WO2 have been measured over the temperature range 340–999 K using differential scanning calorimetry. The lower oxides were prepared by controlled reduction of WO3 in H2/H2O gas atmospheres. Previous calorimetric work on WO3 is confirmed in the temperature range 340–800 K, however, significant increases in heat capacity were observed in the range 800–999 K prior to the orthorhombic—tetragonal phase transition. W20O58 is shown to behave similarly to WO3. A high temperture phase change is evident, however, this appears to be complete by 970–990 K. The measured values of heat capacity for W18O49 are in close agreement with estimated data for W18O49. There is no evidence of any phase transitions for this oxide in the temperature range studied. The heat capacity data for WO2 confirm previous drop calorimetry measurements and give no evidence of any phase changes for WO2 in the temperature range 340–990 K.  相似文献   

4.
Phase equilibria in the Li2CrO4---CaCrO4 system were determined by differential thermal analysis and X-ray powder diffraction. The phase diagram is characterized by a eutectic reaction at 489°C and 5 mole% CaCrO4, and a monotectic reaction at 570°C and 80 mole% CaCrO4. The solubility of Li2CrO4 in CaCrO4 was ≈15 mole% at the eutectic temperature and declined to <5 mole% at the monotectic temperature. No double salt was formed between the end members. The immiscibility observed in the system is rationalized in terms of the cation coordination polyhedra.

Thermal events indicative of a solid state phase change in Li2CrO4 as reported in some references are judged to be the result of a Li2CO3 impurity.  相似文献   


5.
采用溶胶凝胶法制备了不同γ-Al2O3含量的钛铝复合载体,以此为载体采用浸渍法负载V2O5和WO3制备了一系列催化剂。采用X射线衍射(XRD)、比表面积测定(BET)、程序升温还原(H2-TPR)、高分辨率透射电子显微镜(HRTEM)等表征技术对催化剂表面形态进行分析,同时在模拟氨气选择性催化还原NO(NH3-SCR)的反应条件下,对催化剂的脱硝反应活性和SO2抗中毒进行考察。结果发现,TiO2和γ-Al2O3之间的协同作用使得V2O5-WO3/TiO2-γ-Al2O3催化剂的脱硝效率及活性窗口明显优于单一载体制备的催化剂,表现出了良好的热稳定性和抗SO2毒化能力,特别是V2O5-WO3/TiO2-15% γ-Al2O3在310~460 ℃,NO的转化率均在80%以上,反应窗口最宽。各种表征结果表明,TiO2-γ-Al2O3复合载体中γ-Al2O3高度分散在TiO2上,复合载体具有较大的比表面积,同时具有较强的还原能力。  相似文献   

6.
利用精密自动绝热热量计测定了Nd(Gly)2Cl3·3H2O在80-357K和Pr(Ala)3Cl3·3H2O在80-374K温区的热容. 根据两个化合物的热容计算出了相对于参考温度298.15K的热力学函数(HT?H298.15)和(ST?S298.15). 根据热重(TG)分析结果, 提出了这两个稀土化合物可能的热分解机理. 利用溶解-反应恒温热量计测定相关化合物的溶解焓并设计盖斯热化学循环, 计算出了两个化合物的标准摩尔生成焓.  相似文献   

7.
An overview on the variation of the thermal expansion, the electrical conductivity as well as non-stoichiometry of the oxide content as a function of composition within the quasi-ternary system La0.8Sr0.2MnO3−δ–La0.8Sr0.2CoO3−δ–La0.8Sr0.2FeO3−δ in air is presented. The various powders were synthesized under identical conditions. The DC electrical conductivity values of the compositions at 800 °C in air vary in a wide range from 15 to 1338 S cm−1. The magnitude of electrical conductivity of the perovskites is mainly determined by the percentage of cobalt in the compositions. A similar behaviour was observed for the measured thermal expansion coefficients between room temperature and 1000 °C in air, increasing from 10.9 to 19.4 × 10−6 K−1 as a function of cobalt content. Changes in the oxygen stoichiometry of the materials were characterized by temperature-programmed oxidation measurements.  相似文献   

8.
Zwitterionic titanoxanes {Cp[η5-C5H4B(C6F5)3]Ti}2O (I) and {(η5-iPrC5H4)[η5-1,3-iPrC5H3B(C6F5)3]Ti}2O (II), which contain two positively charged Ti(IV) centres in the molecule, are able to catalyse the ring-opening polymerization of -caprolactone (-CL) in toluene solution and in bulk. The process proceeds with a noticeable rate even at room temperature and accelerates strongly on raising the temperature to 60 °C. The best results have been obtained on carrying out the reaction in bulk. Under these conditions, the use of I as a catalyst (-CL:I = 1000:1) gives at 60 °C close to quantitative yield of poly--CL with the molecular mass of 197 000. An increase in the -CL:I ratio to 6000:1 increases the molecular mass of poly--CL to 530 000. Tetrahydrofuran (THF) is also polymerized under the action of I albeit with a lesser rate. However, the molecular mass of the resulting poly-THF can reach rather big values under optimal conditions (up to 217 000 at 20 °C and the THF:I ratio of 770:1). A rise in the reaction temperature from 20 to 60 °C results here to a decrease in the efficiency of the process. Titanoxane II is close to I in its catalytic activity in the -CL polymerization but it is much less active in the polymerization of THF. Propylene oxide (PO), in contrast to -CL and THF, gives with I only liquid oligomers in wide temperature and PO:I molar ratio ranges (−30 to +20 °C, PO:I = 500–2000:1). γ-Butyrolactone and 1-methyl-2-pyrrolidone are not polymerized under the action of I at room temperature. The reactions found are the first examples of catalysis of the cationic ring-opening polymerization by zwitterionic metallocenes of the group IVB metals.  相似文献   

9.
W.M. Shaheen   《Thermochimica Acta》2008,470(1-2):18-26
The effects of calcination temperature and doping with K2O on solid–solid interactions and physicochemical properties of NiO/Fe2O3 system were investigated using TG, DTA and XRD techniques. The amounts of potassium, expressed as mol% K2O were 0.62, 1.23, 2.44 and 4.26. The pure and variously doped mixed solids were thermally treated at 300, 500, 750, 900 and 1000 °C. The catalytic activity was determined for each solid in H2O2 decomposition reaction at 30–50 °C. The results obtained showed that the doping process much affected the degree of crystallinity of both NiO and Fe2O3 phases detected for all solids calcined at 300 and 500 °C. Fe2O3 interacted readily with NiO at temperature starting from 700 °C producing crystalline NiFe2O4 phase. The degree of reaction propagation increased with increasing calcination temperature. The completion of this reaction required a prolonged heating at temperature >900 °C. K2O-doping stimulates the ferrite formation to an extent proportional to its amount added. The stimulation effect of potassium was evidenced by following up the change in the peak height of certain diffraction lines characteristic NiO, Fe2O3, NiFe2O4 phases located at “d” spacing 2.08, 2.69 and 2.95 Å, respectively. The change of peak height of the diffraction lines at 2.95 Å as a function of firing temperature of pure and doped mixed solids enabled the calculation of the activation energy (ΔE) of the ferrite formation. The computed ΔE values were 120, 80, 49, 36 and 25 kJ mol−1 for pure and variously doped solids, respectively. The decrease in ΔE value of NiFe2O4 formation as a function of dopant added was not only attributed to an effective increase in the mobility of reacting cations but also to the formation of potassium ferrite. The calcination temperature and doping with K2O much affected the catalytic activity of the system under investigation.  相似文献   

10.
The temperature-dependent structural changes in 1-butyl-3-methylimidazolium tetrafluoride([Bmim]FeCl4)magnetic ionic liquid(MIL)were investigated by using in-situ X-ray absorption fine structure(XAFS)combined with Raman spectroscopy and DFT calculations.XAFS re sults revealed that the coordination number and bond length of Fe-Cl in the anion of[Bmim]FeCl4 MIL decreased with increments in temperature.These results directly reflected the dissociation of tetrahedral structure[FeCl4]^-,and the formation of bridge-chain[Fe2 Cl5]^+,and[FeCl2]^+species in the anion of[Bmim]FeCl4 MIL.These behaviors indicated that[FeCl4]^-dissociation was endothermic,and was promoted by increased temperature.The results obtained through XAFS were in agreement with those obtained through Raman spectroscopy and DFT calculations.  相似文献   

11.
The IR and Raman spectra of [(CH3)3NH]3Sb2Cl9 (A), [(CH3)3NH]3Bi2Cl9 (B) and two of their mixed crystals containing respectively 33% (AB.33) and 42% Bi (AB.42) are analyzed and compared. A and AB.33 show ferroelectric–paraelectric phase transition at 364 K and 344 K, respectively. AB.42 and B are paraelectric in the temperature range between 90 and 365 K. Most of the vibrational modes show continuous changes, with the temperature, in the IR frequencies or intensities with no soft mode behavior. However, characteristic ν(NHCl) and δ(NHCl) vibrations of weakly hydrogen-bonded species are only observed in A and AB.33 below the temperature of the phase transition and are related to the ferroelectricity. The evolution of the IR spectra with the temperature suggests that the ferroelectric properties are connected with the reorientation of the cations which needs a breaking of the weak NHCl hydrogen bonds in the paraelectric phase.  相似文献   

12.
杨志 《应用化学》2019,36(2):195-202
贵金属催化剂对NOx催化氧化具有优异的催化性能,但催化剂成本较高,而负载型催化剂及非贵金属催化剂受到了广泛的关注。 本文中采用水热法和浸渍法分别制备了SmMn2O5纯相催化剂和SmMn2O5/γ-Al2O3负载催化剂,探索了活性成分SmMn2O5含量对NO催化氧化的影响。 对负载SmMn2O5不同质量分数(5%~100%)的复合催化剂进行了扫描电子显微镜、比表面积、孔径分布、程序升温还原和程序升温脱附的表征以及NO催化氧化的研究。 当SmMn2O5负载量小于50%(35%、25%、15%、5%)时,负载量为25%的催化剂显示出最低的燃点温度(260 ℃),继续增加负载量到50%和75%,与负载25%的复合催化剂相比,起燃温度降低10 ℃,仅高于纯相催化剂40 ℃。 该探索对于SmMn2O5催化剂的有效利用将具有一定的指导作用,并为负载型非贵金属催化剂的设计提供一定的思路。  相似文献   

13.
Interaction between octahedrally coordinated Nd3+ and Yd3+ in Cs2NaNd0,4Yb0,6Cl6 reduces the Nd3+ luminescence lifetime by roughly two orders of magnitude with respect to that found in Cs2NaNdCl6– · – Analysis of low temperature absorption and emission spectra reveals that the nonradiative Nd3+–Yb3+ energy transfer has to be assisted by lattice phonon emission, nevertheless the rate of the transfer is high in the 4–300 K temperature region and attains 5.8×105s-1 at room temperature. A phase transition of Cs2NaNd0,4Yb0,6Cl6 between 12 and 13 K is evidenced by abrupt change of both the spectra and lifetimes of Yb3+. Reduction of Yb3+ lifetime from 5.3 ms to 150 μs is at the transition from low symmetry phase to high symmetry phase is supposed to be associated with a three ion interaction which occurs in ordered lattice and disappears in low temperature disordered structure.  相似文献   

14.
K. B. Dillon  J. Lincoln 《Polyhedron》1983,2(12):1393-1394
The “missing” fourth 35Cl NQR frequency postulated for NH4ICl4H2O at room temperature has been observed. Four signals were also found for this compound at 195K, but the results at 77K were less clear-cut, with either five or (probably) six resonances detected. The occurrence of a phase transition between 77 and 195K seems likely. A structure is suggested for the ICl4 ion at room temperature from the relationship found previously between NQR frequency and bond length in tetrachloroiodates.  相似文献   

15.
The phase transitions and molecular motions of the methylammonium cations were investigated in the (CH3NH3)3Bi2Cl9 (MACB) crystal by dilatometric and dielectric measurements, and by the measurements of the 1H spin-lattice relaxation times and second moment of the 1H NMR absorptions over a wide temperature range. Structural phase transitions, weakly first order at 247 K (III ↔ II) and continuous at 352 K (II ↔ I), were detected by the dilatometric technique. The 1H NMR measurements revealed the presence of the uniaxial reorientations of the three non-equivalent methylammonium cations in the lowest temperature phase (III).  相似文献   

16.
The structure and kinetics of the crystallization reaction of amorphous Te51.3As45.7Cu3 were studied under nonisothermal conditions using scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Two exothermic changes were reported. Five isoconversional methods, of Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO), Tang, Starink, and Vyazovkin, were used to determine the variation of the activation energy for crystallization with temperature, E(T). The results show that the activation energy for crystallization associated with the first peak first decreases with increasing temperature and then increases. Different behaviour was observed for the second peak, where an increase of E with temperature followed by a decrease. The effect of heating rate on the reaction model, g(), was also different for the two crystallization peaks.  相似文献   

17.
采用硫代硫酸铵器外预硫化制备CoMoS/γ-Al2O3催化剂,采用XRD、N2物理吸附、NH3-TPD、XRF等手段对催化剂进行表征,通过固定床微反装置研究其对麻疯树油加氢处理的性能。考察了硫化度、反应温度、氢气压力、反应时间对催化剂活性与催化产物分布的影响,并探讨了麻疯树油甘油三酯的反应路径。结果表明,硫化度为1的CoMoS1/γ-Al2O3催化剂活性最佳,在温度360℃、氢气压力3 MPa条件下,对麻疯树油转化率为96.3%,产物主要成分C15~18正构烷烃收率为75.6%,比相同条件下非硫化CoMo/γ-Al2O3催化剂的转化率提高36.9%。反应温度升至420℃时,CoMoS1/γ-Al2O3催化剂对麻疯树油转化率达100%,产物中无含氧物。麻疯树油加氢处理过程中,增大硫化度和反应温度、减小氢气压力有利于甘油三酯发生加氢脱羧、脱羰反应。  相似文献   

18.
The reactions of (Me2AlH)3 with Me2AsNMe2, MeAs(NMe2)2, and As(NMe2)3 were investigated as a function of time at room temperature and over the temperature range −90 to 24°C by use of 1H and 13C NMR spectroscopy. (Me2AlH)3 was found to be very reactive toward the aminoarsines, even at −90°C, and no stable Me2AlH-aminoarsine adducts were observed. Instead, the initial stages of the reactions involved AS---N bond cleavage with the generation of highly reactive AlN- and AsH-bonded species. The subsequent course of each reaction and the final arsenic-containing product distribution depended upon the original AL:N stoichiometric ratio and the respective aminoarsine. When the Al:N ratio was 1:1, the reactions were straightforward for each aminoarsine. However, in every case, [Me2AlNMe2]2 was the final AlN-containing product. Independent reactions were carried out to verify many of the proposed decomposition pathways that lead to thermodynamically stable products. The results of this study are compared with those of the analogous, previously reported (Me3Al)2-aminoarsine systems. Additionally, a new synthetic route to [Me2AlAsMe2]3 has been established from the reaction of (Me2AlH)3 with Me2AsH.  相似文献   

19.
Ca3Al2Ge3O12:Cr3+的光谱性质及晶场参数计算   总被引:1,自引:0,他引:1  
为了解Cr3+离子在钙铝锗酸盐Ca3Al2Ge3O12:石榴石中的光谱性质, 合成了Ca3Al2Ge3O12:Cr3+多晶材料;测量了其X射线衍射图, 漫反射光谱, 激发、发射光谱等;分析了Cr3+离子在钙铝锗酸盐中的发光特性;计算了其晶场强度(Dq/B), Stokes位移(ΔEs)及黄昆-里斯因子(S)等. 在450 nm激发下, Ca3Al2Ge3O12:Cr3+室温发射光谱主要由三个宽带及附加其上的弱R线构成, 分别对应于Cr3+离子的4T1、 4T2、2T2到 4A2 能级跃迁. 低温时R线变得强而锐. 通过计算, Dq/B=2.43, ΔEs=1884 cm-1, S=5.21. 表明在Ca3Al2Ge3O12中Cr3+离子处于较弱的晶场强度, 电子-声子耦合较强, 为发展可调谐激光材料提供重要线索.  相似文献   

20.
采用固相反应法制备了具有尖晶石结构的LiMn_2O_4/TiO_2系列催化剂,探讨了TiO_2、Li/TiO_2、Mn/TiO_2、LiMn_2O_4及LiMn_2O_4/TiO_2等不同组成催化剂的甲烷氧化偶联反应性能,采用XRD、XPS、CO_2-TPD和H_2-TPR等表征方法对该系列催化剂进行了分析。结果表明,具有尖晶石结构的LiMn_2O_4化合物具有较高的甲烷氧化偶联催化活性,在775℃、0.1MPa、7200mL/(h·g),CH_4∶O_2(体积比)为2.5的条件下,甲烷转化率可达25.8%,C2选择性可达43.2%。TiO_2的存在不仅进一步提高了甲烷转化率和C2选择性,还有效抑制了甲烷完全氧化形成CO_2的过程。负载8%LiMn_2O_4的LiMn_2O_4/TiO_2催化剂性能达到最优,此时甲烷转化率达到31.6%,C2选择性为52.4%,CO_2选择性降低到26.3%。考察了不同焙烧温度对催化剂活性的影响,850℃为LiMn_2O_4/TiO_2催化剂的最佳焙烧温度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号