首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the influence of polyelectrolyte (PE) multilayer films prepared from poly(styrene sulfonate)-poly(acrylic acid) (PSS-PAA) blends, deposited in alternation with poly(allylamine hydrochloride) (PAH), on film wettability and the adsorption behavior of the protein immunoglobulin G (IgG). Variations in the chemical composition of the PAH/(PSS-PAA) multilayer films, controlled by the PSS/PAA blend ratio in the dipping solutions, were used to systematically control film thickness, surface morphology, surface wettability, and IgG adsorption. Spectroscopic ellipsometry measurements indicate that increasing the PSS content in the blend solutions results in a systematic decrease in film thickness. Increasing the PSS content in the blend solutions also leads to a reduction in film surface roughness (as measured by atomic force microscopy), with a corresponding increase in surface hydrophobicity. Advancing contact angles (theta) range from 7 degrees for PAH/PAA films through to 53 degrees for PAH/PSS films. X-ray photoelectron spectroscopy measurements indicate that the increase in film hydrophobicity is due to an increase in PSS concentration at the film surface. In addition, the influence of added electrolyte in the PE solutions was investigated. Adsorption from PE solutions containing added salt favors PSS adsorption and results in more hydrophobic films. The amount of IgG adsorbed on the multilayer films systematically increased on films assembled from blends with increasing PSS content, suggesting strong interactions between PSS in the multilayer films and IgG. Hence, multilayer films prepared from blended PE solutions can be used to tune film thickness and composition, as well as wetting and protein adsorption characteristics.  相似文献   

2.
Patterned multilayer films composed of poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS) were prepared using dip and spin self-assembly (SA) methods. A silicon substrate was patterned with a photoresist thin film using conventional photolithography, and PAH/PSS multilayers were then deposited onto the substrate surface using dip or spin SA. For spin SA, the photoresist on the substrate was retained, despite the high centrifugal forces involved in depositing the polyelectrolytes (PEs). The patterned multilayer films were formed by immersing the PE-coated substrates in acetone for 10 min. The effect of ionic strength on the pattern quality in dip and spin multilayer patterns (line-edge definition and surface roughness of the patterned region) was investigated by increasing the salt concentration in the PE solution (range 0-1 M). In dip multilayer patterns, the presence of salt increased the film surface roughness and pattern thickness without any deformation of pattern shape. The spin multilayer patterns formed without salt induced a height profile of about 130 nm at the pattern edge, whereas the patterns formed with high salt content (1 M) were extensively washed off the substrates. Well-defined pattern shapes of spin SA multilayers were obtained at an ionic strength of 0.4 M NaCl. Multilayer patterns prepared using spin SA and lift-off methods at the same ionic strength had a surface roughness of about 2 nm, and those prepared using the dip SA and lift-off method had a surface roughness of about 5 nm. The same process was used to prepare well-defined patterns of organic/metallic multilayer films consisting of PE and gold nanoparticles. The spin SA process yielded patterned multilayer films with various lengths and shapes.  相似文献   

3.
The influence of a first (anchoring) layer and film treatment on the structure and properties of polyelectrolyte multilayer (PEM) films obtained from polyallylamine hydrochloride (PAH) and polysodium 4-styrenesulfonate (PSS) was studied. Branched polyethyleneimine (PEI) was used as an anchoring layer. The film thickness was measured by ellipsometry. Complementary X-ray reflectometry and AFM experiments were performed to study the change in the interfacial roughness. We found that the thickness of the PEM films increased linearly with the number of layers and depended on the presence of an anchoring PEI layer. Thicker films were obtained for multilayers having PEI as the first layer comparing to films having the same number of layers but consisting of PAH/PSS only. We investigated the wettability of PEM surfaces using direct image analysis of the shape of sessile water drops. Periodic oscillations in contact angle were observed. PAH-terminated films were more hydrophobic than films with PSS as the outermost layer. The effect of long time conditioning of PEM films in solutions of various pH's or salt (NaCl) concentrations was also examined. Salt or base solutions induced modification in wetting properties of the polyelectrolyte multilayers but had a negligible effect on the film thickness.  相似文献   

4.
An efficient method for characterizing wetting properties of heterogeneous surfaces produced by sequential adsorption of polyelectrolytes was developed. Three types of polyelectrolytes were used: polyallylamine hydrochloride (PAH), polyethyleneimine (PEI), both of a cationic type, and polysodium 4-styrenesulfonate (PSS), of an anionic type. Multilayer films were prepared by 'layer-by-layer' (LbL) deposition technique. Natural ruby mica, glass, titanium foil and silicon wafers were used as the support material for PE films. Wetting of polyelectrolyte films was determined experimentally by contact angle measurements, using technique of direct image analysis of shape of sessile drops. Periodic oscillations in contact angle values were observed for multilayers terminated by polycation and polyanion, respectively, and the variations in contact angle values strongly depended on the conditions of adsorption and multilayer treatment after deposition. Therefore, the influence of ionic strength of polyelectrolyte solution used for deposition on wetting of multilayer films was considered and also the effect of conditioning in different environments was investigated. It is usually assumed that film properties and stability strongly depend on the first layer which is used to anchor a multilayer at the surface of support material. To investigate influence of the first layer, PAH/PSS films were compared with more complex ones having PEI as the first layer with a sequence of PSS/PAH deposited on top of it.  相似文献   

5.
Nanocomposite films [Ag/(PAH‐PSS)nPAH]m were fabricated on a silicon substrate using a time‐ and cost‐efficient spin‐assisted layer‐by‐layer (SA‐LbL) self‐assembly technique. A virtually monolayer‐like layer of self‐assembled silver nanoparticles was formed when deposition time increased to 30 min. It was found that polymer multilayers could effectively decrease the resistivity of silver nanoparticle monolayer, which was far higher than that of bulk silver metal; however, the resistivity of Ag/(PAH‐PSS)nPAH multilayer films increased along with the increasing of the number of polymer bilayers. XPS investigations showed that silver nanoparticles were partially oxidized, which might be the major cause of the high resistivity of silver nanoparticle monolayer. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The influences of pH and NaCl concentration of dipping solutions and the pH and NaCl concentration of disintegration solutions on the disintegration behaviors of poly(4-vinylpyridiniomethanecarboxylate) (PVPMC)/poly(sodium 4-styrenesulfonate) (PSS) (PVPMC/PSS) multilayer films were investigated by ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT-IR), quartz crystal microbalance (QCM) and atomic force microscopy (AFM). It was found that the disintegration rates and degrees of PVPMC/PSS multilayer films in neutral water could be well controlled by changing pH of dipping solutions and immersion time during the disintegration process. Furthermore, PVPMC/PSS multilayer films could be disintegrated completely and rapidly in pH 8 alkali solution or physiological condition (i.e., 0.15 M NaCl solution). The controllable disintegration of PVPMC/PSS multilayer films was then utilized to fabricate PEC/PSS free-standing multilayer films, in which PEC was a positively charged polyelectrolyte complex made from excessive poly(diallyldimethylammonium) (PDDA) and PSS. The experimental results indicated that the disintegration rates of PVPMC/PSS sacrificial sublayer strongly affected the integrity of the resultant PEC/PSS free-standing multilayer films. Only free-floating PEC/PSS was released from neutral water by disintegrating PVPMC/PSS multilayer sublayers. However, large size flat and tube-like PEC/PSS free-standing multilayer films with good mechanical properties were obtained facilely from pH 8 alkali solution and 0.15 M NaCl solution, respectively. The preparation of such free-standing films at physiological condition may be useful in the biological or medical application.  相似文献   

7.
Temperature- and pH-sensitive poly(N-isopropylacrylamide)?Cco-acrylic acid (pNIPAm-co-AAc) microgels were deposited on glass substrates coated with polyelectrolyte multilayers composed of the polycation poly(allylamine hydrochloride) (PAH) and the polyanion poly(sodium 4-styrenesulfonate) (PSS). The microgel density and structure of the resultant films were investigated as a function of: (1) the number of PAH/PSS layers (layer thickness); (2) the charge on the outer layer of the polyelectrolyte multilayer film; and (3) the pH of microgel deposition solution. The resultant films were studied by differential interference contrast optical microscopy, atomic force microscopy, and scanning electron microscopy. It was found that the coverage of the microgels on the surface was a complex function of the pH of the deposition solution, the charge on the outer layer of the polyelectrolyte thin film and the PAH/PSS layer thickness; although it appears that microgel charge plays the biggest role in determining the resultant surface coverage.  相似文献   

8.
Prussian blue (PB) nanoparticles were immobilized in polyelectrolyte (PE) multilayers of various compositions and thickness. Films containing nanoparticles and poly(allylamine hydrochloride) (PAH) were formed using the layer-by-layer adsorption method. A layer of branched poly(ethyleneimine) (PEI) was used to anchor the multilayer structure at the surface of a gold electrode. The films exhibited electroactive properties, increasing with the number of deposited PB layers. The properties of PEI/(PB/PAH) n multilayers were then compared with the ones containing additionally the conductive polymer poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT:PSS). We found that the addition of the conductive, water-soluble polymer enhances the electroactive properties of the multilayer films. It also increased sensitivity of the multilayer-covered electrodes for electrochemical detection of hydrogen peroxide.  相似文献   

9.
The electro-optical behavior of a multilayer constructed via layer-by-layer deposition of poly(sodium 4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) onto ellipsoidal β-FeOOH particles is examined using electric light scattering method. For fully charged polymers (at pH 4.5), the electro-optical effect is found to increase with polyelectrolyte layer number, showing a tendency to saturation in the linear growth regime. The effect is greater and of lower frequency of relaxation for the films ending with PAH in comparison to those with top PSS layer. Evidence is given that polarization of “condensed” counterions along the chains of the last-adsorbed polymer is mainly responsible for the observed electro-optical behavior of the polyelectrolyte multilayer. Although incorporation of “condensed” small ions into the film bulk seems probable for the PSS/PAH multilayer, their participation in the electro-optical effect is found negligible. The structural changes in the PSS/PAH multilayer due to the PAH deprotonation at pH 7.5 and the corresponding changes in the electro-optical effect confirm the key role of the last-adsorbed polymer for the behavior of the entire PSS/PAH film.  相似文献   

10.
Polyelectrolyte multilayer films were successfully assembled from each of the three charged derivatives of chitosan; N-[(2-hydroxyl-3-trimethylammonium)propyl]chitosan chloride (HTACC), N-succinyl chitosan (SCC) and N-sulfofurfuryl chitosan (SFC), paired with one of the two oppositely charged polyelectrolytes, poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) on surface-treated poly(ethylene terephthalate) (treated PET) substrates by alternate layer-by-layer adsorption. Surface coverage and wettability of the multilayer films were determined by AFM and water contact angle measurements, respectively. Analysis by quartz crystal balance with dissipation (QCM-D) has suggested that all multilayer films are relatively rigid and have a high water content associated within their structures, accounting for up to 85-90% (w/w) for films having 7-10 layers. In vitro cytocompatibility tests for the fibroblast-like L929 cell line revealed a slight dependency for cell adhesion and proliferation on the outermost layer. The multilayer film containing HTACC exhibited moderate antibacterial activity against E. coli and S. aureus. Bearing negative charges, the multilayer films terminating with SFC and having at least 10 layers were capable of suppressing the adsorption of plasma proteins and platelet adhesion at a comparable level to the multilayer film assembled from heparin, a well-known antithrombogenic polymer.  相似文献   

11.
The effect of solvent conditions on the growth of polyelectrolyte (PE) multilayer films comprising poly(allylamine hydrochloride) (PAH) and poly(styrenesulfonate sodium salt) (PSS) on planar substrates was investigated by means of surface plasmon resonance spectroscopy (SPRS), quartz crystal microbalance (QCM), and atomic force microscopy techniques. The solvent quality was varied by the addition of ethanol to the PE solutions used for deposition of the layers, thus tuning the relative strength of electrostatic and secondary intermolecular and intramolecular interactions. Experiments were performed with PE solutions both without added electrolyte and containing 0.5 M NaCl. Decreasing the solvent quality (i.e., increasing the amount of ethanol in the adsorption solution) resulted in a marked increase of both the multilayer film thickness and mass loading, as determined from the SPRS spectra and QCM frequency shifts, respectively. With the solution composition approaching the precipitation point, thick PAH/PSS films were formed due to the screening of the electrostatic intra- and interchain repulsions and enhanced hydrophobic interactions between the polyelectrolyte chains. However, the films formed from water/ethanol mixtures remained stable upon subsequent exposure to water or salt-containing solutions: no significant film desorption occurred after up to 24 h of exposure to water or 0.5 M NaCl solutions. In addition, the effect of postdeposition exposure to water/ethanol mixtures was investigated for PE multilayers assembled from aqueous solutions. In this case, the optical thickness of the films was determined during exposure to water/ethanol mixtures, and instead of swelling, the polyelectrolyte films collapse to the surface as a result of the unfavorable segment-solvent interactions.  相似文献   

12.
Interactions between surfaces bearing multilayer films of poly(allylamine hydrochloride) (PAH) and poly(styrenesulfonate sodium salt) (PSS) were investigated across a range of aqueous KBr solutions. Three layer films (PAH/PSS/PAH) were preassembled on mica surfaces, and the resulting interactions were measured with the interferometric surface force apparatus (SFA). Increasing the ionic strength of the medium resulted in a progressive swelling of the multilayer films. Interactions in solutions containing more than 10(-3) M KBr were dominated by a long-ranged steric repulsion originating from compression of polyelectrolyte segments extending into solution. In 10(-1) M KBr, repeated measurements at the same contact position showed a considerable reduction of the range and the strength of the steric force, indicating a flattening of the film during initial approach. Furthermore, this flattening was irreversible on the time scale of the experiments, and measurements performed up to 72 h after the initial compression showed no signs of relaxation. These studies aid in understanding the dominant interactions between polyelectrolyte multilayers, including polyelectrolyte films deposited on colloidal particles, which is important for the preparation of colloidally stable nanoengineered particles.  相似文献   

13.
Multilayer thin films were constructed on polystyrene colloidal particles by depositing alternating layers of poly(allylamine hydrochloride) (PAH) at pH 7.5 and varying composition blends of poly(acrylic acid) (PAA) and poly(styrenesulfonate) (PSS) at pH 3.5. Following the deposition of each layer, microelectrophoresis experiments showed alternating zeta-potentials, suggesting the formation of multilayered films on the particles. Scanning and transmission electron microscopy were used to examine the surface morphology of the colloidal particles, with homogeneous surface coatings apparent for films deposited from PAA/PSS blend solutions containing up to 90 wt % PAA. The colloidal stability of these particles is greater than those coated with individual PAH and PAA layers. In the case of the blend PAA/PSS = 25:75 wt %, up to 20 layers were assembled without compromising the colloidal stability of the dispersion. The results demonstrate that the deposition of layers from PE blend solutions containing a strong and weak PE can be used as a facile method for controlling the surface properties and hence the colloidal stability of core-shell particles, as well as the thickness and morphology of the coatings. Control of these parameters is important for subsequent processing and application of these particles in controlled delivery, photonics, catalytic, and separation applications.  相似文献   

14.
The binding of immunogloblulins (IgG) (mouse monoclonal recognizing IFNγ) on precoated polystyrene or silica surfaces by the layer-by-layer technique has been investigated with QCM-D and DPI. The aim of the work was to increase the sensitivity of the conventional enzyme-linked immunosorbent spot (ELISpot) assay. The polyelectrolytes used to build the multilayers were poly(allylamine hydrochloride) (PAH)/poly(sodium 4-styrenesulfonate) (PSS) alternately adsorbed from 150mM NaCl. The multilayer build up is linear and the internal structure of the PAH/PSS multilayer is compact and rigid as observed by low relative water content (20-25%) and high layer refractive index (n~1.5) after the formation of five bilayers. Incorporation of IgG within the PAH/PSS multilayer did not give rise to overcharging and did not affect the linear build up. ELISpot test on PAH/PSS multilayer modified polystyrene wells showed that the cytokine response was significantly smaller than on the regular PVDF backed polystyrene wells. This may be due to the compact and rigid nature of the PAH/PSS multilayer, which does not allow formation of the kind of three dimensional support needed to achieve bioactive IgG binding to the surface. Immunological tests of the polyelectrolyte multilayers in the absence of IgG showed that PSS terminated PAH/PSS multilayer did not induce any cytokine response whereas PAH terminated did, which suggests that PSS totally covers the surface from the cells point of view.  相似文献   

15.
《Supramolecular Science》1998,5(3-4):309-315
In the present study it is shown that streptavidin-containing multilayer films with varying numbers of polyelectrolyte spacer layers can be fabricated reproducibly using optimized deposition conditions. Direct alternation of streptavidin and PLB leads to multilayer systems with an average streptavidin thickness of 5.3 nm which is in good agreement with the dimensions of the protein. When the streptavidin layers are spacered by more polyelectrolyte layers the distance between the protein sheets is increased up to e.g. 6.5 nm in the case of (PLB/PSS/PAH/PSS/PLB) as spacer layer. X-ray reflectivity reveals that streptavidin increases the surface roughness of the films probably due to the rigid three-dimensional structure of the protein. The control of surface roughness seems to be essential for a successful multilayer build-up. The property of PLB to provide for multilayer construction by two different interactions (electrostatic and specific) allowed to probe the interpenetration depth of adjacent layers. For the [PLB/(PSS/PL)2/streptavidin] system an interpenetration depth of about 4 polymer layers corresponding to approximately 3.4 nm has been derived. These data are in agreement with a model for pure polyelectrolyte films obtained from neutron and X-ray reflectivity data.  相似文献   

16.
Attenuated total internal reflectance Fourier transform infrared, ATR-FTIR, spectroscopy was used to compare the water uptake and doping within polyelectrolyte multilayers made from poly(styrene sulfonate), PSS, and a polycation, either poly(allylamine hydrochloride), PAH, or poly(diallyldimethylammonium chloride), PDADMAC. Unlike PDADMA/PSS multilayers, whose water content depended on the solution ionic strength, PAH/PSS multilayers were resistant to doping by NaCl to a concentration of 1.2 M. Using (infrared active) perchlorate salt, the fraction of residual counterions in PDADMA/PSS and PAH/PSS was determined to be 3% and 6%, respectively. The free energy of association between the polymer segments, in the presence of NaClO4, was about 5 kJ mol-1 and -10 kJ mol-1, respectively, for PDADMA/PSS and PAH/PSS, indicating the relatively strong association between the polymer segments in the latter relative to the former. Varying the pH of the solution in contact with the PAH/PSS multilayer revealed a transition to a highly swollen state, interpreted to signal protonation of PAH under much more basic conditions than the pKa of the solution polymer. The increase in the multilayer pKa suggested an interaction energy for PAH/PSS in NaCl of ca. 16 kJ mol-1.  相似文献   

17.
聚电解质PSS/PDDA分子沉积膜表面性能研究   总被引:3,自引:0,他引:3  
PSS PDDAMD膜紫外 可见吸光度与层数呈线性关系 ,其延长线基本为零证实了是一单分子层层状沉积过程 ;利用接触角测量仪跟踪MD膜沉积过程 ,其结果表明 ,层数较少时PSS PDDAMD膜表面润湿性呈“奇 偶”性规律变化 ,层数较多时规律性不明显 ,这说明聚电解质MD膜结构缺陷随着层数的增加有增大趋势 ;通过对原子力显微镜 (AFM)测定结果的分析 ,进一步证实了多层PSS PDDAMD膜存在结构缺陷 .  相似文献   

18.
Two combinations of sodium poly(4-styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) of different chain length and charge density are employed to construct multilayer films. The polyelectrolytes are assembled layer-by-layer on colloidal particles in the absence of salt. We have investigated the formation and electrical characteristics of the films by using electric light scattering technique. The results show that the film thickness is independent of the chain length when fully charged PAH (at pH 4.6) is combined with fully charged PSS. When the films are prepared with less charged PAH (at pH 6.7) and fully charged PSS, lower thickness is found for the film with shorter polymer chains. In all cases, the thickness increment realized on addition of the polymer with lower molar concentration is partially lost on exposure to the solution with higher concentration of the oppositely charged partner. When the film growth is regular (at equal molar concentrations of the fully charged polyelectrolytes), the ratio of PSS to PAH charge, estimated from the electro-optical effect values, exceeds 1. The electro-optical effect is also higher for the films ending with PSS when fully charged PSS is combined with less charged PAH (at pH 6.7). This reveals the key role of the charge in the last-adsorbed layer for the electro-optical behavior of the whole film.  相似文献   

19.
A capillary wave technique was used to study the viscoelastic properties of floating polyelectrolyte multilayers of (PSS/PAH)(n) at the air-water interface. Oppositely charged polyelectrolyte layers were adsorbed onto two different Langmuir monolayers, either the lipid dimethyldioctadecylammonium bromide (DODAB) or the block copolymer poly(styrene-b-sodium acrylate) (PS-b-PAA). The results allow to propose a schematic representation of the multilayers in three zones: Zone I as a precursor, representing the adhesion between the Langmuir monolayer and the bulk polyelectrolyte multilayer. Zone II forms a bulk or core zone of the multilayer. Zone III as an outer zone in direct contact with the aqueous phase. The results show an increase of the elasticity after the formation of four polyelectrolyte layers accompanied by an apparent negative viscosity. This behaviour was interpreted as a translation of elasticity dominance from zone I to zone II. The Young modulus of seven layers was in the same order of magnitude as observed for planar polyelectrolyte multilayer films.  相似文献   

20.
Deposition of layer-by-layer polyelectrolyte multilayer (PEM) films has been a widely applied surface modification technique to improve the biocompatibility of biomaterials. The objective of this study was to investigate the impact of the deposition of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) multilayer films on adhesion, growth and differentiation of osteoblasts-like MG63 cells. PAH and PAA were deposited sequentially onto tissue culture polystyrene at either pH 2.0 or pH 6.5 with 4-21 layers. While the MG63 cells attached poorly on the PAH/PAA multilayer films deposited at pH 2.0, while the cells adhered to the PEM films deposited at pH 6.5, depending on layer numbers. Cell adhesion, proliferation and osteogenic activities (alkaline phosphatase activity, expression of osteogenic marker genes and mineralization) were highest on the 4-layer PAH/PAA film and decreased with increasing layer numbers. On the other hand, the behavior of MG63 cells did not show any difference on the adjacent even and odd layers, except PEM4 and PEM5, i.e. the surface charges of the PAH/PAA multilayer films with over ten layers seem indifferent to osteoblastic functions. The results in this study suggested that the mechanical properties of PEM films may play a critical role in modulating the behavior of osteoblasts, providing guidance for application of PEM films to osteopaedic implants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号