首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Interest in the use of non-Saccharomyces yeast in mixed cultures is increasing due to the perceived improvement in the quality and complexity of the resulting wines. The aim of the study was to determine the ability of monocultures and mixed yeast cultures for deacidification and improvement of the composition of cold climate grape wines. Fermentation of grape musts with increased total acidity was carried out with the use of monocultures of Saccharomyces cerevisiae MH020215 (Sc), Zygosaccharomyces bailii 749 (Zb) and Metschnikowia pulcherrima MG970690 (Mp), and their mixed cultures, inoculated simultaneously and sequentially. Oenological parameters, organic acids and volatile compounds profiles of obtained wines were characterized. The fermentation kinetics and analytical profiles of the obtained wines showed that the use of mixed yeast cultures contributed to the reduction of volatile acidity and acetic acid content in the wines, as well as obtaining a favorable aromatic profile of the wines. The dominant higher alcohols in all wines were 2-methyl-1-propanol, 3-methyl-1-butanol and 2-methyl-1-butanol. Significantly higher amounts of the first two compounds were found in wines obtained with M. pulcherrima MG070690, both in monoculture and in mixed cultures. The monocultures of M. pulcherrima MG070690 (Mp) compared with Z. bailli 749 (Zb) synthesized higher levels of esters in wines, including ethyl acetate, ethyl propionate, isobutyl acetate, ethyl pyroracemate and isoamyl acetate.  相似文献   

2.
Sorghum is of growing interest and considered as a safe food for wheat related disorders. Besides the gluten, α-amylase/trypsin-inhibitors (ATIs) have been identified as probable candidates for these disorders. Several studies focused on wheat-ATIs although there is still a lack of data referring to the relative abundance of sorghum-ATIs. The objective of this work was therefore to contribute to the characterization of sorghum ATI profiles by targeted proteomics tools. Fifteen sorghum cultivars from different regions were investigated with raw proteins ranging from 7.9 to 17.0 g/100 g. Ammonium bicarbonate buffer in combination with urea was applied for protein extraction, with concentration from 0.588 ± 0.047 to 4.140 ± 0.066 mg/mL. Corresponding electrophoresis data showed different protein profiles. UniProtKB data base research reveals two sorghum ATIs, P81367 and P81368; both reviewed and a targeted LC–MS/MS method was developed to analyze these. Quantifier peptides ELAAVPSR (P81367) and TYMVR (P81368) were identified and retained as biomarkers for relative quantification. Different reducing and alkylating agents were assessed and combination of tris (2 carboxyethyl) phosphine/iodoacetamide gave the best response. Linearity was demonstrated for the quantifier peptides with standard recovery between 92.2 and 107.6%. Nine sorghum cultivars presented up to 60 times lower ATI contents as compared to wheat samples. This data suggests that sorghum can effectively be considered as a good alternative to wheat.  相似文献   

3.
Metabolic landscape and sensitivity to apoptosis induction play a crucial role in acute myeloid leukemia (AML) resistance. Therefore, we investigated the effect of metformin, a medication that also acts as an inhibitor of oxidative phosphorylation (OXPHOS), and MCL-1 inhibitor S63845 in AML cell lines NB4, KG1 and chemoresistant KG1A cells. The impact of compounds was evaluated using fluorescence-based metabolic flux analysis, assessment of mitochondrial Δψ and cellular ROS, trypan blue exclusion, Annexin V-PI and XTT tests for cell death and cytotoxicity estimations, also RT-qPCR and Western blot for gene and protein expression. Treatment with metformin resulted in significant downregulation of OXPHOS; however, increase in glycolysis was observed in NB4 and KG1A cells. In contrast, treatment with S63845 slightly increased the rate of OXPHOS in KG1 and KG1A cells, although it profoundly diminished the rate of glycolysis. Generally, combined treatment had stronger inhibitory effects on cellular metabolism and ATP levels. Furthermore, results revealed that treatment with metformin, S63845 and their combinations induced apoptosis in AML cells. In addition, level of apoptotic cell death correlated with cellular ROS induction, as well as with downregulation of tumor suppressor protein MYC. In summary, we show that modulation of redox-stress could have a potential anticancer activity in AML cells.  相似文献   

4.
The serine protease, DegP exhibits proteolytic and chaperone activities, essential for cellular protein quality control and normal cell development in eukaryotes. The P. falciparum DegP is essential for the parasite survival and required to combat the oscillating thermal stress conditions during the infection, protein quality checks and protein homeostasis in the extra-cytoplasmic compartments, thereby establishing it as a potential target for drug development against malaria. Previous studies have shown that diisopropyl fluorophosphate (DFP) and the peptide SPMFKGV inhibit E. coli DegP protease activity. To identify novel potential inhibitors specific to PfDegP allosteric and the catalytic binding sites, we performed a high throughput in silico screening using Malaria Box, Pathogen Box, Maybridge library, ChEMBL library and the library of FDA approved compounds. The screening helped identify five best binders that showed high affinity to PfDegP allosteric (T0873, T2823, T2801, RJC02337, CD00811) and the catalytic binding site (T0078L, T1524, T2328, BTB11534 and 552691). Further, molecular dynamics simulation analysis revealed RJC02337, BTB11534 as the best hits forming a stable complex. WaterMap and electrostatic complementarity were used to evaluate the novel bio-isosteric chemotypes of RJC02337, that led to the identification of 231 chemotypes that exhibited better binding affinity. Further analysis of the top 5 chemotypes, based on better binding affinity, revealed that the addition of electron donors like nitrogen and sulphur to the side chains of butanoate group are more favoured than the backbone of butanoate group. In a nutshell, the present study helps identify novel, potent and Plasmodium specific inhibitors, using high throughput in silico screening and bio-isosteric replacement, which may be experimentally validated.  相似文献   

5.
Coccoloba cowellii Britton (Polygonaceae) is an endemic and critically endangered plant that only grows in Camagüey, a province of Cuba. In this study, a total of 13 compounds were identified in a methanolic leaf extract, employing a dereplication of the UHPLC-HRMS data by means of feature-based molecular networking (FBMN) analysis in the Global Natural Products Social Molecular Network (GNPS), together with the interpretation of the MS/MS data and comparison with the literature. The major constituents were glucuronides and glycosides of myricetin and quercetin, as well as epichatechin-3-O-gallate, catechin, epicatechin and gallic acid, all of them being reported for the first time in C. cowellii leaves. The leaf extract was also tested against various microorganisms, and it showed a strong antifungal effect against Candida albicans ATCC B59630 (azole-resistant) (IC50 2.1 µg/mL) and Cryptococcus neoformans ATCC B66663 (IC50 4.1 µg/mL) with no cytotoxicity (CC50 > 64.0 µg/mL) on MRC-5 SV2 cells, determined by the resazurin assay. Additionally, the extract strongly inhibited COX-1 and COX-2 enzyme activity using a cell-free experiment in a dose-dependent manner, being significantly more active on COX-1 (IC50 4.9 µg/mL) than on COX-2 (IC50 10.4 µg/mL). The constituents identified as well as the pharmacological activities measured highlight the potential of C. cowellii leaves, increasing the interest in the implementation of conservation strategies for this species.  相似文献   

6.
Synthetic pollutants are a looming threat to the entire ecosystem, including wildlife, the environment, and human health. Polyhydroxyalkanoates (PHAs) are natural biodegradable microbial polymers with a promising potential to replace synthetic plastics. This research is focused on devising a sustainable approach to produce PHAs by a new microbial strain using untreated synthetic plastics and lignocellulosic biomass. For experiments, 47 soil samples and 18 effluent samples were collected from various areas of Punjab, Pakistan. The samples were primarily screened for PHA detection on agar medium containing Nile blue A stain. The PHA positive bacterial isolates showed prominent orange–yellow fluorescence on irradiation with UV light. They were further screened for PHA estimation by submerged fermentation in the culture broth. Bacterial isolate 16a produced maximum PHA and was identified by 16S rRNA sequencing. It was identified as Stenotrophomonas maltophilia HA-16 (MN240936), reported first time for PHA production. Basic fermentation parameters, such as incubation time, temperature, and pH were optimized for PHA production. Wood chips, cardboard cutouts, plastic bottle cutouts, shredded polystyrene cups, and plastic bags were optimized as alternative sustainable carbon sources for the production of PHAs. A vital finding of this study was the yield obtained by using plastic bags, i.e., 68.24 ± 0.27%. The effective use of plastic and lignocellulosic waste in the cultivation medium for the microbial production of PHA by a novel bacterial strain is discussed in the current study.  相似文献   

7.
Hydrogen is regarded as one of the most potential sustainable energy sources in the future. Applications include transportation. Still, the event of materials for its storage is difficult notably as a fuel in vehicular transport. Nanocones are a promising hydrogen storage material. Silicon, germanium, and tin carbide nanocones have recently been proposed as promising hydrogen storage materials. In the present study, we have investigated the hydrogen storage capacity of SiC,GeC, and SnC nanocones functionalized with Ni. The functionalized Ni atom are found to be adsorbed on SiCNC,GeCNC, and SnCNC with an adsorption energy of −5.56, −6.70, and −4.25 eV. The functionalized SiCNC,GeCNC, and SnCNC bind up to seven, six and four molecules of hydrogen with the adsorption energy of (−0.34, −0.35, and −0.26 eV) and an average desorption temperature of around 434, 447, and 332 K (ideal for fuel cell applications). The SiC, GeC, and SnC nanocones systems exhibit a maximum gravimetric storage capacity of 12.51, 7.78, and 4.08 wt%. We suggested that Ni SiCNC and Ni GeCNC systems can act as potential H2 storage device materials because of their higher H2 uptake capacity as well as their stronger interaction with adsorbed hydrogen molecules than Ni SnCNC systems. The hydrogen storage reactions are characterized in terms of the charge transfer, the partial density of states, the frontier orbital band gaps, and isosurface plots. And electrophilicity are calculated for the functionalized and hydrogenated SiC,GeC, and SnC nanocones.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Selective C –C couplings are powerful strategies for the rapid and programmable construction of bi‐ or multiaryls. To this end, the next frontier of synthetic modularity will likely arise from harnessing the coupling space that is orthogonal to the powerful Pd‐catalyzed coupling regime. This report details the realization of this concept and presents the fully selective arylation of aryl germanes (which are inert under Pd0/PdII catalysis) in the presence of the valuable functionalities C?BPin, C?SiMe3, C?I, C?Br, C?Cl, which in turn offer versatile opportunities for diversification. The protocol makes use of visible light activation combined with gold catalysis, which facilitates the selective coupling of C?Ge with aryl diazonium salts. Contrary to previous light‐/gold‐catalyzed couplings of Ar–N2+, which were specialized in Ar–N2+ scope, we present conditions to efficiently couple electron‐rich, electron‐poor, heterocyclic and sterically hindered aryl diazonium salts. Our computational data suggest that while electron‐poor Ar–N2+ salts are readily activated by gold under blue‐light irradiation, there is a competing dissociative deactivation pathway for excited electron‐rich Ar–N2+, which requires an alternative photo‐redox approach to enable productive couplings.  相似文献   

15.
16.
17.
18.
Abstract

Ethylcarboxylate and acetyl selenoloquinoline derivatives were prepared in a one pot synthesis via reaction of sodium hydrogen selenide and 2-chloro-3-cyano-4-methylquinoline followed by reactions with ethyl chloroacetate and chloro acetone respectively which used as precursors to synthesize many of tetra and pentacyclic systems. A new series of pyrimido [4′,5′:4,5]selenolo[2,3-b]quinoline, thiazino[2’,3’:4,5]selenolo[2,3-b]quinoline, oxazino[2',3':4,5]selenolo[3,2-b]quinoline, pyrido[2′,3′:4,5]selenolo[2,3-b]quinoline, pyrido[2′,3′:4,5]selenolo[2,3-b]quinoline-2-substituted selenyl and selenolo[2′,3′:5,6]pyrido[2″,3″:4,5]selenolo[2,3-b]quinoline derivatives were prepared. Elemental analysis, IR, 1H NMR, 13 Abdel-Hafez, S. H.; Gobouri, A. A.; Alshanbari, N. A.; Gad El-Rab, S. M. F. Synthesis of Novel Vitamin E Containing Sulfa Drug Derivatives and Study Their Anti-Bacterial Activity. Med. Chem. Res. 2018, 27, 23412352. DOI: 10.1007/s00044-018-2240-7.[Crossref], [Web of Science ®] [Google Scholar]C NMR and mass spectra confirmed the structures of the newly synthesized compounds.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号