首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our study evaluated the in vitro antioxidant properties, antibacterial and antifungal activities, anti-inflammatory properties, and chemical composition of the essential oils (EOs), total phenol, and total flavonoid of wild Mentha pulegium L. This study also determined the mineral (nutritional and toxic) elements in the plant. The EOs were extracted using three techniques—hydro distillation (HD), steam distillation (SD), and microwave-assisted distillation (MAD)—and were analyzed using chromatography coupled with flame ionization (GC-FID) and gas chromatography attached with mass spectrometry detector (GC-MS). The antioxidant effects of the EOs were tested with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), while the antibacterial and antifungal activities of the EO and methanolic extract were tested using Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. Twenty-six compounds were identified in the essential oil, representing 97.73% of the total oil, with 0.202% yield. The major components were pulegone (74.81%), menthone (13.01%) and piperitone (3.82%). Twenty-one elements, including macro- and micro-elements (Ba, Br, Ca, Cl, Co, Cr, Cs, Eu, Fe, K, Mg, Mn, Mo, Na, Rb, Sb, Sc, Sr, Th, U and Zn), were detected using neutron activation analysis (INAA) and inductively coupled plasma optical emission spectrometry (ICP-OES), with the concentration of mineral element close to the FAO recommendation. The results show that the EOs and extracts from Mentha pulegium L. had significant antimicrobial activities against the microorganisms, including five human pathogenic bacteria, one yeast (Candida albicans), and one phytopathogenic fungi. The in vivo anti-inflammatory activities of the leaf extracts were confirmed. The results indicate that the EOs and extracts from Mentha pulegium L. have promising applications in the pharmaceutical industries, clinical applications, and in medical research.  相似文献   

2.
Multiple biological functions of Mentha pulegium extract were evaluated in the current work. Phytochemical components of the M. pulegium extract were detected by Gas Chromatography-Mass Spectrometry (GC-MS) and High-performance liquid chromatography (HPLC). Moreover, M. pulegium extract was estimated for antioxidant potential by 2,2-Diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical scavenging, antimicrobial activity by well diffusion, and anticoagulant activity via prothrombin time (PT) and activated partial thromboplastin time (APTT). GC-MS analysis detected compounds including cholesterol margarate, stigmast-5-en-3-ol, 19-nor-4-androstenediol, androstan-17-one, pulegone-1,2-epoxide, isochiapin B, dotriacontane, hexadecanoic acid and neophytadiene. Chrysoeriol (15.36 µg/mL) was followed by kaempferol (11.14 µg/mL) and 7-OH flavone (10.14 µg/mL), catechin (4.11 µg/mL), hisperdin (3.05 µg/mL), and luteolin (2.36 µg/mL) were detected by HPLC as flavonoids, in addition to ferulic (13.19 µg/mL), cinnamic (12.69 µg/mL), caffeic (11.45 µg/mL), pyrogallol (9.36 µg/mL), p-coumaric (5.06 µg/mL) and salicylic (4.17 µg/mL) as phenolics. Antioxidant activity was detected with IC50 18 µg/mL, hemolysis inhibition was recorded as 79.8% at 1000 μg/mL, and PT and APTT were at 21.5 s and 49.5 s, respectively, at 50 μg/mL of M. pulegium extract. The acute toxicity of M. pulegium extract was recorded against PC3 (IC50 97.99 µg/mL) and MCF7 (IC50 80.21 µg/mL). Antimicrobial activity of M. pulegium extract was documented against Bacillus subtilis, Escherichia coli, Pseudomonas aureus, Candida albicans, Pseudomonas aeruginosa, but not against black fungus Mucor circinelloides. Molecular docking was applied using MOE (Molecular Operating Environment) to explain the biological activity of neophytadiene, luteolin, chrysoeriol and kaempferol. These compounds could be suitable for the development of novel pharmacological agents for treatment of cancer and bacterial infections.  相似文献   

3.
The aerial parts of wild and cultivated Mentha mozaffarianii Jamzad were collected at full flowering stage from two provinces (Hormozgan and Fars) of Iran. The essential oils were extracted by a Clevenger approach and analysed using GC and GC–MS. The main components in wild plants were piperitenone (33.85%), piperitone (21.18%), linalool (6.89%), pulegone (5.93%), 1, 8.cineole (5.49%), piperitenone oxide (5.17%) and menthone (4.69%) and in cultivated plants, cis-piperitone epoxide (28.89%), linalool (15.36%), piperitone (11.57%), piperitenone oxide (10.14%), piperitenone (8.42%),1,8-cineole (3.60%) were the main constituents in essential oil. The in vitro antimicrobial activity of the essential oil of M. mozaffarianii was studied against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Candida albicans. The results of the bioassays showed that the oil exhibited high antimicrobial activity against all the tested pathogens.  相似文献   

4.
This study investigated the chemical composition, antioxidant and antimicrobial activity of essential oil extracted from Artemisia aragonensis Lam. (EOA). Hydrodistillation was employed to extract EOA. Gas chromatography with flame ionization detection (GC-FID) and gas chromatography-mass spectrometry analyses (GC-MS) were used to determine the phytochemical composition of EOA. Antioxidant potential was examined in vitro by use of three tests: 2.2-diphenyl-1-picrilhidrazil (DPPH), ferric reducing activity power (FRAP) and total antioxidant capacity assay (TAC). Agar diffusion and microdilution bioassays were used to assess antimicrobial activity. GC/MS and GC-FID detected 34 constituents in the studied EOA. The major component was Camphor (24.97%) followed by Borneol (13.20%), 1,8 Cineol (10.88%), and Artemisia alcohol (10.20%). EOA exhibited significant antioxidant activity as measured by DPPH and FRAP assays, with IC50 and EC50 values of 0.034 ± 0.004 and 0.118 ± 0.008 mg/mL, respectively. EOA exhibited total antioxidant capacity of 7.299 ± 1.774 mg EAA/g. EOA exhibited potent antibacterial activity as judged by the low minimum inhibitory concentration (MIC) values against selected clinically-important pathogenic bacteria. MIC values of 6.568 ± 1.033, 5.971 ± 1.033, 7.164 ± 0.0 and 5.375 ± 0.0 μg/mL were observed against S. aureus, B. subtills, E. coli 97 and E. coli 57, respectively. EOA displayed significant antifungal activity against four strains of fungi: F. oxysporum, C. albicans, A. flavus and A. niger with values of 21.50 ± 0.43, 5.31 ± 0.10, 21.50 ± 0.46 and 5.30 ± 0.036 μg/mL, respectively. The results of the current study highlight the importance of EOA as an alternative source of natural antioxidant and antibacterial drugs to combat antibiotic-resistant microbes and free radicals implicated in the inflammatory responses accompanying microbial infection.  相似文献   

5.
Essential oils (EOs) are intricate combinations of evaporative compounds produced by aromatic plants and extracted by distillation or expression. EOs are natural secondary metabolites derived from plants and have been found to be useful in food and nutraceutical manufacturing, perfumery and cosmetics; they have also been found to alleviate the phenomenon of antimicrobial resistance (AMR) in addition to functioning as antibacterial and antifungal agents, balancing menstrual cycles and being efficacious as an immune system booster. Several main aldehyde constituents can be found in different types of EOs, and thus, aldehydes and their derivatives will be the main focus of this study with regard to their antimicrobial, antioxidative, anti-inflammatory and immunomodulatory effects. This brief study also explores the activity of aldehydes and their derivatives against pathogenic bacteria for future use in the clinical setting.  相似文献   

6.
The aim of this study was to determine the variability of several chemical compounds and the antioxidant and antimicrobial activities of eight types of berries harvested from two different geographical regions in the same year. The analyses were performed on bilberry, black currant, gooseberry, red currant, raspberry, sea buckthorn, strawberry and sour cherry, which were handpicked during the summer of 2019, in the same periods when they are typically harvested for consumer purposes. Total anthocyanins content (TAC), total flavonoids content (TFC), total polyphenolic compounds (TPC), determination of the Ferric-Reducing Antioxidant Power (FRAP), determination of the DPPH free radical scavenging assay (RSA), determination of nine phenolic compounds by HPLC-UV assay and antimicrobial activity were determined for undiluted hydroalcoholic extracts of all the studied berries. The results showed that the berries from Romania were richer in antioxidant compounds than the berries from Russia. The TPC content varied between 4.13–22.2 mg GAE/g d.w., TFC between 3.33–8.87 mg QE/g d.w. and TAC between 0.13–3.94 mg/g d.w. The highest variability was determined for TPC. Regarding the antioxidant activity assessed by FRAP assay, values were between 6.02–57.23 µmols TE/g d.w. and values for the RSA method between 18.44–83.81%. From the eight types of berries analyzed, bilberries and raspberries had the highest antioxidant activity considering both regions and both determination methods. Not only the type, but also the environmental and cultivation conditions in which the berries grow, can lead to variations in their chemical composition. The extracted polyphenolic compounds from the studied berries showed antibacterial properties on pathogens, such as Escherichia coli, Bacillus subtilis and Staphyloccocus aureus. The inhibitory action on Salmonella typhi and fungi Candida albicans and Aspegillus niger was absent to very low. The antimicrobial activity of the hydroalcoholic extracts was dependent on the provenance of the berries, too.  相似文献   

7.
Natural origin molecules represent reliable and excellent sources to overcome some medicinal problems. The study of anticancer, anticoagulant, and antimicrobial activities of Thevetia peruviana latex were the aim of the current research. An investigation using high-performance liquid chromatography (HPLC) revealed that the major content of the flavonoids are rutin (11.45 µg/mL), quersestin (7.15 µg/mL), naringin (5.25 µg/mL), and hisperdin (6.07 µg/mL), while phenolic had chlorogenic (12.39 µg/mL), syringenic (7.45 µg/mL), and ferulic (5.07 µg/mL) acids in latex of T. peruviana. Via 1,1-diphenyl-2- picrylhydrazyl (DPPH) radical scavenging, the experiment demonstrated that latex had a potent antioxidant activity with the IC50 43.9 µg/mL for scavenging DPPH. Hemolysis inhibition was 58.5% at 1000 µg/mL of latex compared with 91.0% at 200 µg/mL of indomethacin as positive control. Negligible anticoagulant properties of latex were reported where the recorded time was 11.9 s of prothrombin time (PT) and 29.2 s of the activated partial thromboplastin time (APTT) at 25 µg/mL, compared with the same concentration of heparin (PT 94.6 s and APPT 117.7 s). The anticancer potential of latex was recorded against PC-3 (97.11% toxicity) and MCF-7 (96.23% toxicity) at 1000 μg/mL with IC50 48.26 μg/mL and 40.31 µg/mL, respectively. Disc diffusion assessment for antimicrobial activity recorded that the most sensitive tested microorganisms to latex were Bacillus subtilis followed by Escherichia coli, with an inhibition zone (IZ) of 31 mm with minimum inhibitory concentration (MIC) (10.2 μg/mL) and 30 mm (MIC, 12.51 μg/mL), respectively. Moreover, Candida albicans was sensitive (IZ, 28 mm) to latex, unlike black fungus (Mucor circinelloides). TEM examination exhibited ultrastructure changes in cell walls and cell membranes of Staphylococcus aureus and Pseudomonas aeruginosa treated with latex. Energy scores of the molecular docking of chlorogenic acid with E. coli DNA (7C7N), and Rutin with human prostate-specific antigen (3QUM) and breast cancer-associated protein (1JNX), result in excellent harmony with the experimental results. The outcome of research recommended that the latex is rich in constituents and considered a promising source that contributes to fighting cancer and pathogenic microorganisms.  相似文献   

8.
This work assessed the phenolic and flavonoid components and their antioxidant, antifungal, and antibacterial effects in the ethanolic extract of barberry leaf and roots. The antibactericidal activity of root and leaf extracts against pathogenic bacteria was tested using agar diffusion and microdilution broth production for the lowest inhibitory concentration (MIC). Berberis vulgaris root and leaf extracts inhibited Staphylococcus aureus ATCC9973, Escherichia coli HB101, Staphylococcus enteritis, and Escherichia coli Cip812. The disc assay technique was used to assess the bactericidal activity of the extracts versus both pathogenic Gram-positive and Gram-negative strains. Hydro alcoholic extract was more effective against bacterial than fungal strains. The results showed that Berberis vulgaris leaf and roots extract had similar antifungal activities. Berberis vulgaris root extract inhibited the mycelial growth of Penicillium verrucosum, Fusarium proliferatum, Aspergillus ochraceous, Aspergillus niger, and Aspergillus flavus. Berberis vulgaris root extract has excellent antioxidant, antibacterial, and antifungal effects. Berberis vulgaris exhibited antimicrobial activity in vitro, and MIC showed that Berberis vulgaris parts efficiently affected pathogens in vitro. In conclusion, both Berberis vulgaris roots and leaves have considerable antibacterial activity and can be used as a source of antibacterial, antioxidant, and bioactive compounds to benefit human health.  相似文献   

9.
Colorectal cancer is one of the most frequently diagnosed forms of cancer, and the therapeutic solutions are frequently aggressive requiring improvements. Essential oils (EOs) are secondary metabolites of aromatic plants with important pharmacological properties that proved to be beneficial in multiple pathologies including cancer. Mentha piperita L. (M_EO) and Rosmarinus officinalis L. (R_EO) essential oils are well-known for their biological effects (antimicrobial, antioxidant, anti-inflammatory and cytotoxic in different cancer cells), but their potential as complementary treatment in colorectal cancer is underexplored. The aim of the present study was to investigate the M_EO and R_EO in terms of chemical composition, antioxidant, antimicrobial, and cytotoxic effects in a colorectal cancer cell line—HCT 116. The gas-chromatographic analysis revealed menthone and menthol, and eucalyptol, α-pinene and L-camphor as major compounds in M_EO and R_EO respectively. M_EO exhibited potent antimicrobial activity, moderate antioxidant activity and a low cytotoxic effect in HCT 116 cells. R_EO presented a significant cytotoxicity in colorectal cancer cells and a low antimicrobial effect. The cytotoxic effect on non-cancerous cell line HaCaT was not significant for both essential oils. These results may provide an experimental basis for further research concerning the potential use of M_EO and R_EO for anticancer treatment.  相似文献   

10.
Various mint taxa are widely cultivated and are used not only for medicinal purposes but also in cosmetic and industrial applications. The development of new varieties or cultivars of mint generates difficulties in their correct identification and safe use. Volatile organic compounds (VOCs) from the leaves of seven different taxa of the genus Mentha obtained by hydrodistillation (HD) and headspace solid-phase microextraction (HS-SPME) were analyzed using gas chromatography–mass spectrometry (GC-MS). Principal component analysis (PCA) was also performed. Comparative GC-MS analysis of the obtained extracts showed similarity in the major compounds. PCA data allowed the separation of two groups of chemotypes among the analyzed mints, characterized by the abundance of piperitenone oxide and carvone. Two out of seven analyzed taxa were not previously examined for VOC profile, one was examined only for patent application purposes, and six out of seven were investigated for the first time using the HS-SPME technique. The presented analysis provides new data on the abundance and qualitative characterization of VOCs in the studied mint plants and on the safety of their use, related to the possibility of the presence of potentially toxic components. HS-SPME is a valuable method to extend the characterization of the VOC profile obtained by hydrodistillation.  相似文献   

11.
The purpose of this study was to chemically compare samples of Mentha spicata (marketing byproducts, production byproducts, and export material), cultivated in the open field and under greenhouse, using an integrated approach by HPLC/DAD and GC/MS analysis. The presence of phenolic compounds was higher in the marketing byproducts cultivated in the open field. Marketing byproducts also had the highest amount of carvone. For this reason, this byproduct was selected as a candidate for the development of natural ingredients. With the best selected material, the optimization of simultaneous high-intensity ultrasound-assisted extraction processes was proposed for the recovery of the compounds of interest. This extraction was defined by Peleg’s equation and polynomial regression analysis. Modeling showed that the factors amplitude, time, and solvent were found to be significant in the recovery process (p < 0.005). The maximum amount of compounds was obtained using 90% amplitude for 5 min and ethanol/water mixture (80:20) for extraction to simultaneously obtain phenolic and terpenoid compounds. This system obtained the highest amount of monoterpenoid and sesquiterpenoid compounds from the essential oil of M. spicata (64.93% vs. 84.55%). Thus, with an efficient and eco-friendly method, it was possible to optimize the extraction of compounds in M. spicata as a starting point for the use of its byproducts.  相似文献   

12.
The aim of this study was to evaluate the ability of 0.1% thyme oil (TO), trans-cinnamaldehyde (TC), ferulic acid (FA), p-coumaric acid (p-CA), caffeic acid (CA), lavender essential oil (LO), geranium essential oil (GO) and tee tree oil (TTO) to control biofilms formed by methicillin-resistant Staphylococcus aureus (MRSA) strains. Depending on the strains, TO reduced 59.7–85% of biofilm mass, while TC 52.9–82.4% after 48 h of treatment. Reduction of metabolic activity of biofilms in ranges 79.3–86% and 85.9–88.7% was observed after 48 h of TC and TO of treatment, respectively. In the case of some strains, reduction of biofilm mass in the presence of FA, CA, GO, LO and TTO was not observed. This study showed that TO and TC might have therapeutic potential as an inhibitory agents for use in MRSA biofilm-related infections.  相似文献   

13.
The phytochemical composition of leaves, stems, pericarps and rhizomes ethanolic extracts of Asparagus acutifolius were characterized by HPLC-DAD-MS. A. acutifolius samples contain at least eleven simple phenolics, one flavonon, two flavonols and six steroidal saponins. The stem extracts showed the highest total phenolic acid and flavonoid contents, where cafeic acid and rutin were the main compounds. No flavonoids were detected in the leaf, pericarp or rhizome while caffeic acid and ferulic acid were the predominant. Steroidal saponins were detected in the different plant parts of A. acutifolius, and the highest contents were found in the rhizome extracts. The stem extracts exhibited the highest antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) and the highest 2,2-azino-bis (3 ethylbenzothiazoline-6-sulphonic acid) (ABTS) scavenging activity was found in the pericarp extracts. The rhizome and leaf extracts showed a potent cytotoxic activity against HCT-116 and HepG2 cell lines. Moreover, the pericarp and rhizome extracts revealed a moderate lipase inhibitory activity. The leaf and rhizome extracts were screened for their antimicrobial activity against human pathogenic isolates. The leaf extract exhibited a powerful inhibitory activity against all the bacteria and fungi tested.  相似文献   

14.
The main objective of this research was to study the biological characteristics in terms of antioxidant and antimicrobial activities of Ajuga iva and determine the best analytical and extraction methods applicable to this specie and studied compounds. A short screening of its nutritional value in terms of chemical composition is also included. A. iva leaves were analyzed for crude protein (CP), cell wall [neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL)], minerals, fatty acids, essential oils, and phenolic compounds. Mature aerial parts of A. iva were randomly collected during the Spring season from Mograne-Zaghouan, Tunisia. Leaves of A. iva contained 13.4 ± 0.4% CP, 26.3 ± 0.35% NDF, 20.2 ± 0.42% ADF, and 5.13 ± 0.21% ADL. Mineral content (13.0 ± 0.45%) was mainly composed of potassium (4.5% g DM) and magnesium (4.25% DM). Leaves of A. iva had linolenic (26.29 ± 0.760%) and linoleic (37.66 ± 2.35%) acids as the main components of the acid profile. Thymol was found to be the most dominant (23.43%) essential oil, followed by 4-vinylguaiacol (14.27%) and linalool (13.66%). HPLC-PDA-ESI-MS/MS analysis pointed out the presence of phytoecdysteroids. Phenolic acids and flavonoids, such as glycosylated derivatives of naringenin, eriodyctiol, and apigenin, were detected in the methanol extract of A. iva leaves. Our results underline the importance of choosing proper extraction methods and solvents to extract and characterize the described compounds profile of A. iva leaves. Results also show A. iva leaves as a potential source of functional ingredients with beneficial health-promoting properties. Overall, leaves of A. iva have low biological activities (antioxidant and antimicrobial activities) with a chemical composition suitable as a feed for ruminants in rangeland pasture. It also has low-grade antibacterial or medicinal characteristics when fed to ruminants.  相似文献   

15.
The potential of essential oils (EO), distilled from two aromatic plants—clary sage (Salvia sclarea L.) and coriander (Coriandrum sativum L.)—in view of applications as natural therapeutic agents was evaluated in vitro. These two were cultivated on a trace element (TE)-polluted soil, as part of a phytomanagement approach, with the addition of a mycorrhizal inoculant, evaluated for its contribution regarding plant establishment, growth, and biomass production. The evaluation of EO as an antioxidant and anti-inflammatory, with considerations regarding the potential influence of the TE-pollution and of the mycorrhizal inoculation on the EO chemical compositions, were the key focuses. Besides, to overcome EO bioavailability and target accession issues, the encapsulation of EO in β-cyclodextrin (β-CD) was also assessed. Firstly, clary sage EO was characterized by high proportions of linalyl acetate (51–63%) and linalool (10–17%), coriander seeds EO by a high proportion of linalool (75–83%) and lesser relative amounts of γ-terpinene (6–9%) and α-pinene (3–5%) and coriander aerial parts EO by 2-decenal (38–51%) and linalool (22–39%). EO chemical compositions were unaffected by both soil pollution and mycorrhizal inoculation. Of the three tested EO, the one from aerial parts of coriander displayed the most significant biological effects, especially regarding anti-inflammatory potential. Furthermore, all tested EO exerted promising antioxidant effects (IC50 values ranging from 9 to 38 g L1). However, EO encapsulation in β-CD did not show a significant improvement of EO biological properties in these experimental conditions. These findings suggest that marginal lands polluted by TE could be used for the production of EO displaying faithful chemical compositions and valuable biological activities, with a non-food perspective.  相似文献   

16.
Citrus plants are widely utilized for edible purposes and medicinal utility throughout the world. However, because of the higher abundance of the antimicrobial compound D-Limonene, the peel waste cannot be disposed of by biogas production. Therefore, after the extraction of D-Limonene from the peel wastes, it can be easily disposed of. The D-Limonene rich essential oil from the Citrus limetta risso (CLEO) was extracted and evaluated its radical quenching, bactericidal, and cytotoxic properties. The radical quenching properties were DPPH radical scavenging (11.35 ± 0.51 µg/mL) and ABTS scavenging (10.36 ± 0.55 µg/mL). There, we observed a dose-dependent antibacterial potential for the essential oil against pathogenic bacteria. Apart from that, the essential oil also inhibited the biofilm-forming properties of E. coli, P. aeruginosa, S. enterica, and S. aureus. Further, cytotoxicity was also exhibited against estrogen receptor-positive (MCF7) cells (IC50: 47.31 ± 3.11 µg/mL) and a triple-negative (MDA-MB-237) cell (IC50: 55.11 ± 4.62 µg/mL). Upon evaluation of the mechanism of action, the toxicity was mediated through an increased level of reactive radicals of oxygen and the subsequent release of cytochrome C, indicative of mitotoxicity. Hence, the D-Limonene rich essential oil of C. limetta is useful as a strong antibacterial and cytotoxic agent; the antioxidant properties exhibited also increase its utility value.  相似文献   

17.
Chemical composition, antioxidant capacity, and antimicrobial activity of lavender essential oils (LEOs) extracted from three different varieties of Lavandula angustifolia Mill. (1-Moldoveanca 4, 2-Vis magic 10, and 3-Alba 7) have been determined. These plants previously patented in the Republic of Moldova were cultivated in an organic agriculture system in the northeastern part of Romania and then harvested in 3 consecutive years (2017–2019) to obtain the essential oils. From the inflorescences in the complete flowering stage, the LEOs were extracted by hydrodistillation. Then, their composition was analyzed by gas chromatography coupled with mass spectrometry (GC-MS) and by Fourier Transformed Infrared spectroscopy (FT-IR). The major identified constituents are as follows: linalool (1: 32.19–46.83%; 2: 29.93–30.97%; 3: 31.97–33.77%), linalyl acetate (1: 17.70–35.18%; 2: 27.55–37.13%; 3: 28.03–35.32%), and terpinen-4-ol (1: 3.63–7.70%; 2: 3.06–7.16%; 3: 3.10–6.53%). The antioxidant capacity as determined by ABTS and DPPH assays indicates inhibition, with the highest activity obtained for LEO var. Alba 7 from 2019. The in vitro antimicrobial activities of the LEOs and combinations were investigated as well, by using the disk diffusion method and minimum inhibitory concentration (MIC) against the Gram-positive bacterial strain Staphylococcus aureus (ATCC 6538), Gram-negative Pseudomonas aeruginosa (ATCC 27858), Escherichia coli (ATCC 25922), the yeast Candida albicans (ATCC 10231), and clinical isolates. Our results have shown that LEOs obtained from the three studied varieties of L. angustifolia manifest significant bactericidal effects against tested microorganisms (Staphylococcus aureus and Escherichia coli), and antifungal effects against Candida albicans. The mixture of LEOs (Var. Alba 7) and geranium, respectively, in tea tree EOs, in different ratios, showed a significant enhancement of the antibacterial effect against all the studied strains, except Pseudomonas aeruginosa.  相似文献   

18.
The analysis of Thymus willdenowii Boiss &; Reut essential oils (TW EOs) shows 33 components accounting for (96.3–97.7%) of all identified. The main constituents of TW EOs were thymol (35.5–47.3%), p-cymene (13.9–23.8%), γ-terpinene (8.9–20.3%). The antioxidant assays revealed that all TW EOs tested showed strong activities, the antimicrobial effect of TW EOs has been tested against isolated clinical strains of Proteus mirabilis (ATCC 35659), Escherichia coli (ATCC 25922), Candida albicans (ATCC 10231), Bacillus cereus (ATCC 10876), and Aspergillus brasilliensis (ATCC 16404). The antimicrobial test indicates that TW EOs show an inhibition effect against all the tested bacteria with a MIC of 6.9 to 27.6 μg/mL?1. These results proving that the essential oils extracted from Thymus willdenowii Boiss &; Reut may be a new potential source of natural antimicrobial applied in pharmaceutical and food industries.  相似文献   

19.
Sunflower (Helianthus annuus L.) contains active ingredients, such as flavonoids, alkaloids and tannins. Nevertheless, few studies have focused on essential oil from the receptacle of sunflower (SEO). In this work, we investigated the chemical composition and antimicrobial and antioxidant activities of SEO. The yield of SEO was about 0.42% (v/w) by hydrodistillation. A total of 68 volatile components of SEO were putatively identified by gas chromatography–mass spectrometry (GC-MS). The main constituents of SEO were α-pinene (26.00%), verbenone (7.40%), terpinolene (1.69%) and α-terpineol (1.27%). The minimum inhibitory concentration (MIC) of SEO against P. aeruginosa and S. aureus was 0.2 mg/mL. The MIC of SEO against S. cerevisiae was 3.2 mg/mL. The MIC of SEO against E. coli and Candida albicans was 6.4 mg/mL. The results showed that SEO had high antibacterial and antifungal activities. Three different analytical assays (DPPH, ABTS and iron ion reducing ability) were used to determine the antioxidant activities. The results showed that SEO had antioxidant activities. To summarize, the results in this study demonstrate the possibility for the development and application of SEO in potential natural preservatives and medicines due to its excellent antimicrobial and antioxidant activities.  相似文献   

20.
Increasing concerns over the use of antimicrobial growth promoters in animal production has prompted the need to explore the use of natural alternatives such as phytogenic compounds and probiotics. Citrus EOs have the potential to be used as an alternative to antibiotics in animals. The purpose of this research was to study the antibacterial and antioxidant activities of five citrus EOs, grapefruit essential oil (GEO), sweet orange EO (SEO), bergamot EO (BEO), lemon EO (LEO) and their active component d-limonene EO (DLEO). The chemical composition of EOs was analyzed by gas chromatography–mass spectrometry (GC-MS). The antibacterial activities of the EOs on three bacteria (Escherichia coli, Salmonella and Lactobacillus acidophilus) were tested by measuring the minimum inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and inhibition zone diameter (IZD). The antioxidant activities of EOs were evaluated by measuring the free radical scavenging activities of DPPH and ABTS. We found that the active components of the five citrus EOs were mainly terpenes, and the content of d-limonene was the highest. The antibacterial test showed that citrus EOs had selective antibacterial activity, and the LEO had the best selective antibacterial activity. Similarly, the LEO had the best scavenging ability for DPPH radicals, and DLEO had the best scavenging ability for ABTS. Although the main compound of the five citrus EOs was d-limonene, the selective antibacterial and antioxidant activity of them might not be primarily attributed to the d-limonene, but some other compounds’ combined action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号