首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We perform first-principles calculation to investigate electronic and magnetic properties of Co-doped WSe2 monolayer with strains from −10% to 10%. We find that Co can induce magnetic moment about 0.894 μB, the Co-doped WSe2 monolayer is a magnetic semiconductor material without strain. The doped system shows half-metallic properties under tensile strain, and the largest half-metal gap is 0.147 eV at 8% strain. The magnetic moment (0.894 μB) increases slightly from 0% to 6%, and jumps into about 3 μB at 8% and 10%, which presents high-spin state configurations. When we applied compressive strain, the doped system shows a half-metallic feature at −2% strain, and the magnetic moment jumps into 1.623 μB at −4% strain, almost two times as the original moment 0.894 μB at 0% strain. The magnetic moment vanishes at −7% strain. The Co-doped WSe2 can endure strain from −6% to 10%. Strain changes the redistribution of charges and magnetic moment. Our calculation results show that the Co-doped WSe2 monolayer can transform from magnetic semiconductor to half-metallic material under strain.  相似文献   

2.
The effect of isoelectric transition metals (TM) Nb and Ta on the magnetism of the V(001) surface is investigated from first principles using Density functional theory (DFT), with the generalized gradient approximation (GGA). Ferromagnetic (FM) moments of 2.5 μB and 2.2 μB are obtained for the relaxed surface V monolayer (ML) in the V/Nb(001) and the V/Ta(001) systems respectively, at T = 0 K. The values are almost twice of those obtained with Mo and W of group VIB and can be attributed to the comparatively smaller bandwidths of the substrates Nb and Ta. Small induced magnetic moments are present on the Nb and Ta interfacial layers, which are coupled anti-ferromagnetically with the V ML.  相似文献   

3.
The geometries, electronic structures, spin magnetic moments (SMMs), orbital magnetic moments (OMMs) and spin anisotropy energies (SAEs) of light rare earth atoms (La, Ce, Pr, Nd, Pm, Sm, Eu, and Gd) embedded in graphene were studied by using first-principles calculations based on Density Functional Theory (DFT). The spin-orbital coupling effect was taken into account and GGA+U method was adopted to describe the strongly localized and correlated 4f electrons. There is a significant deformation of the graphene plane after doping and optimization. The deformation of Gd doped graphene is the largest, while Eu the smallest. The results show that the valence is +3 for La, Ce, Pr, Nd, Pm, Sm and Gd, and +2 for Eu. Except Eu and Gd, there are obvious OMMs. When the spin is in the Z direction, the OMMs are −0.941 μB, −1.663 μB, −3.239 μB, −3.276 μB and −3.337 μB for Ce, Pr, Nd, Pm and Sm, respectively, and point the opposite direction of SMMs. All the doped systems except Gd show considerable SAEs. For Ce, Pr, Nd, Pm, Sm, and Eu, the SAEs are −0.928 meV, 20.941 meV, −8.848 meV, 7.855 meV, 75.070 meV and 0.810 meV, respectively. When the spin orientation is different, different orbital angular moments lead to apparent charge density difference of the 4f atoms, which can also explain the origin of SAEs.  相似文献   

4.
Using the full potential linearized augmented plane wave (FLAPW) method, we have investigated the adatom or vacancy defect induced magnetic properties of hexagonal boron nitride (h-BN) monolayer. It has been observed that the N vacancy defect has no influence on the magnetic property of h-BN, whereas the B vacancy defect caused spin polarization in the nearest three N atoms. The total magnetic moment is about 0.87 μB within muffin-tin radius (0.29 μB per N atom) and the spin polarized N atoms show metallic feature. In the presence of B adatom defect, we have obtained rather weak spin polarization about 0.1 μB. However, the sizable magnetic moment of 0.38 μB appears in N adatom defect. Both B and N adatom defect systems preserve very close to semiconducting feature with a finite band gap. We have found that the DOS and the XMCD spectral shapes are strongly dependent on the defect type existing in the h-BN monolayer and this finding may help reveal the origin of magnetism in the h-BN layer if one performs surface sensitive experiment such as spin polarized scanning tunneling microscopy or XMCD measurement in the near future.  相似文献   

5.
Microstructural (X-ray diffraction), magnetic properties (hysteresis loop), electrical resistivity, magneto-impedance and stress impedance effects have been investigated in cold-drawn Fe77.5B15Si7.5 amorphous wire. Initial amorphous wire (obtained by the in-rotating-water technique) with diameter of 125 μm was submitted to cold-drawn process decreasing the diameter to 50 μm. Such cold-drawn wire was treated by current annealing (currents of 190, 210, 220 and 230 mA during times between 1 and 45 min) for tailoring the magnetic and electrical transport properties. A qualitative analysis of the magnetoimpedance and stress impedance effects is given by considering the influence of the magnetoelastic anisotropy and frequency of the AC driving electrical current on the circular permeability.  相似文献   

6.
Electronic and magnetic properties of Mn-doped WSe2 monolyer subject to isotropic strain are investigated using the first-principles methods based on the density functional theory. Our results indicate that Mn-doped WSe2 monolayer is a magnetic semiconductor nanomaterial with strong spontaneous magnetism without strain and the total magnetic moment of Mn-doped system is 1.038μB. We applied strain to Mn-doped WSe2 monolayer from -10% to 10%. The doped system transforms from magnetic semiconductor to half-metallic material from −10% to −2% compressive strain and from 2% to 6% tensile strain. The largest half-metallic gap is 0.450 eV at −2% compressive strain. The doped system shows metal property from 7% to 10%. Its maximum magnetic moment comes to 1.181μB at 6% tensile strain. However, the magnetic moment of system decreases to zero sharply when tensile strain arrived at 7%. Strain changes the redistribution of charges and arises to the magnetic effect. The coupling between the 3d orbital of Mn atom, 5d orbital of W atom and 4p orbital of Se atom is analyzed to explain the strong strain effect on the magnetic properties. Our studies predict Mn-doped WSe2 monolayers under strain to be candidates for thin dilute magnetic semiconductors, which is important for application in semiconductor spintronics.  相似文献   

7.
Using the full-potential linearized augmented plane wave method with generalized gradient approximation, the magnetic properties and the electronic structure of the boron-doped ZnSe (zinc blende phase) are investigated. Spin polarization calculations show the magnetic moment of the 64-atoms supercell containing one BSe (BZn) is 3.00 (0.015) μB. The density of states indicates the magnetic moments of the BSe doped configuration mainly come from the doped boron atoms and a few from its neighboring zinc atoms. The ferromagnetic and antiferromagnetic calculations for several doped configurations suggest BSe could induce stable ferromagnetic ground state in ZnSe hosts and ferromagnetic couplings exist between the doped boron atoms. Electronic structures show that BSe is p-type ferromagnetic semiconductor and hole-mediated double exchange is responsible for the ferromagnetism, while the BZn doped configuration is n-type semiconductor. Relative shallow acceptor and donor levels indicate boron-doped ZnSe is ionized easily at working temperatures.  相似文献   

8.
The electronic structure and optical properties of Mo, S vacancy and V doping in MoS2 monolayer will be investigated through first-principles calculations based on the density functional theory. The results indicate that the MoS2 with Mo, S vacancy and V doping (Mo14VS32, Mo15VS31 and Mo14VS31) will gain the property of magnetic semiconductor with the magnetic moment of 1 μB, 1 μB and 0.95 μB, respectively. The optical properties of these V-doped and vacancy defect structures all reflect the phenomenon of red shift. The absorption edge of pure monolayer molybdenum disulfide is 0.8 eV, whereas the absorption edges of Mo14VS32, Mo15VS31 and Mo14VS31 become 0 eV, 0.2 eV and 0.16 eV, respectively. As a potential material, MoS2 is widely used in many fields such as the production of optoelectronic devices, military devices and civil devices.  相似文献   

9.
The Fe69Si16B10C5, Co75Si10B15, Co68Mn7Si10B15 amorphous microwires have been studied by the magnetoresonance absorption technique in the X (9.5 GHz), K (20–27 GHz) and Q (30–37 GHz) frequency bands. The specimens under study were metal threads of about 5 μm in diameter coated with dielectric Pyrex layer with thickness 5 μm. The dependences of magnetic resonance spectra on frequency and wire orientation have been measured. The analysis of the resonance signal parameters has revealed that well-known classical equations for FMR in a cylindrical-shaped sample could not be applied for these microwires. It is shown that due to the skin depth effect the model of hollow cylindrical tube has to be applied to explain the experimental results in the frequency range measured. The values of saturation magnetization, g-factor and anisotropy field have been estimated from the frequency dependence of the field for resonance.  相似文献   

10.
The effect of pressure on magnetic properties of YCo12B6 and CeCo12B6 was studied in temperature range 5–300 K at pressures up to 9 kbar. The Curie temperature TC and spontaneous magnetization MS decrease with pressure for both compounds. The decrease can be attributed mostly to the volume dependence of both, the Co magnetic moment and the exchange interactions. The hybridization of the p–d states as a consequence of small distances between the Co and B atoms can be one reason of the relatively low pressure effects (ΔTCp=?0.39±0.02 K/kbar, d ln MS/dp=?0.0013±0.0002 kbar?1) in YCo12B6. Higher volume sensitivity of magnetic properties of CeCo12B6 in comparison with YCo12B6 can be attributed to the pressure induced changes of the Ce f- and Co d-states.  相似文献   

11.
The effects of hydrostatic pressure up to 10 kbar on Curie temperature TC, compensation temperature TCOMP and spontaneous magnetization MS of ferrimagnetic GdCo12B6 compound have been studied. Two antiferromagnetically coupled sublattices that are carrying magnetization of typically 0.42 μB/Co atom and 7 μB/Gd cancel out at compensation temperature at about 50 K and magnetic ordering temperature TC=163±2 K. The volume dependence of intrinsic magnetic properties of the GdCo12B6 compound has been determined by studying it under hydrostatic pressure. The observed increase of MS with pressure (dMS/dp=+0.005 μB kbar?1 at 5 K) is attributed predominantly to the pressure induced decrease of Co magnetic moments. The crucial role of Co in this behavior is confirmed by the change of sign of the pressure slope at temperatures above TCOMP and by the fact that the estimated decrease of mCo is also quite comparable with pressure induced decrease of MS in YCo12B6 (dMS/dp=?0.007 μB kbar?1). The decrease of mCo is also responsible for the increase of TCOMP with pressure (dTCOMP/dp=+0.06 K kbar?1). The decrease of TC with pressure (dTC/dp=?0.55 K kbar?1) is comparable to the decrease observed on RCo12B6 compounds with non-magnetic R and can be attributed to the volume dependence of Co–Co exchange interactions. The remarkable role of the hybridization as a consequence of small distances between Co and B atoms could be a background of this rather unexpected volume stability of magnetic properties.  相似文献   

12.
In view of important role of inducing and manipulating the magnetism in 2D materials for the development of low-dimensional spintronic devices, the magnetism of GaN monolayer with Ga vacancy and nonmagnetic chemical doping are investigated using first-principles calculations. It is found that pure GaN monolayer has graphene-like structure and is nonmagnetic. While, a neutral Ga vacancy can induce 3 μB intrinsic magnetic moment, localized mainly on the neighboring N atoms. Interestingly, after one Mg or Si atom doping in g-GaN with Ga vacancy, the magnetic moment can be modified to 4 μB or 2 μB respectively due to the change in hole number. Meantime, Mg-doped g-GaN with Ga vacancy shows half-metal character. With the increasing of doping concentrations, the magnetic moment can be further tuned. The results are interesting from a theoretical point of view and may open opportunities for these 2D GaN based materials in magnetic devices.  相似文献   

13.
We perform first-principles calculations with a specific LDA + U scheme for non-doped iron based superconductor LaFeAsO, which exhibits an antiferromagnetic ordering with an unexpected low-magnetic moment compared to the one predicted by standard first-principles calculations. Consequently, we find two stable electronic structures, one of which has the high magnetic moment ~2.0 μB equivalent with the previous calculation results, and another of which reproduces the low magnetic moment ~0.3 μB as obtained experimentally. The former is stable in U = 0, whereas the latter becomes stable in an intermediate U range. The latter well explains various anomalous features as observed experimentally.  相似文献   

14.
The influence of a Ni deficit in the nickel sublattice on the electronic and magnetic properties of PrNi2−xSb2 compound is investigated. The band structure is calculated using the LMTO method for x=0, 0.50, 1.0 and 1.5. At T=0 K the compound is antiferromagnetic with a magnetic moment on Pr close to 2.0 μB.  相似文献   

15.
The changes of magnetic properties with annealing temperature were studied in the amorphous Fe86.7Zr3.3B4Ag6 thin film. The thin films were deposited by a DC magnetron sputtering method, annealed at 300–700°C for 1 h in vacuum under a field of 1.5 kOe parallel to the film plane, and then furnace-cooled. As a result, it has been found that the Ag addition to Fe–Zr–B amorphous thin films resulted in the decrease of crystallization temperature to 400°C due to promoted crystallization ability. Also, it gave rise to formation of fine BCC α-Fe crystalline precipitates with a grain size smaller than 10 nm in the amorphous matrix near 400°C, and led to prominent enhancement in the magnetic properties of the Fe86.7Zr3.3B4Ag6 thin films. Significantly, excellent magnetic properties such as a saturation magnetization of 1.7 T, a coercive force of 1 Oe and a permeability of 7800 at 50 MHz were obtained in the amorphous Fe86.7Zr3.3B4Ag6 thin film containing 7.2 nm-size BCC α-Fe, which was annealed at 400°C. Also, core loss of 1.4 W cm−3 (Bm=0.1 T) at 1 MHz in the thin film was obtained, and it is a much lower value than had been obtained in any existing soft magnetic materials. Such excellent properties are inferred to originate from the uniform dispersion of nano-size BCC α-Fe in the amorphous matrix.  相似文献   

16.
Polycrystalline (Fe/Pd)n multilayers are grown onto sapphire substrates at room temperature in a UHV system. The number of periods n=40 and the thickness of Pd layers of tPd=4 nm are kept constant, whereas the thickness of the Fe layers is varied from 1.5 to 5 nm. Structural properties are studied by in situ reflection high energy diffraction (RHEED), scanning tunnelling microscopy (STM) and ex situ by X-ray diffraction at small angles and large angles. Analyzing the experimental data using the program SUPREX we obtain interplanar distances of dFe=2.03±0.01 Å for an Fe layer thickness larger than about 2.5 nm as expected for (1 1 0) planes of BCC Fe. For Fe layers with thicknesses less than about 2.5 nm the interplanar distance is dFe=2.1±0.01 Å, which is close to the distance between (1 1 1) planes of FCC Fe with a lattice parameter of a=3.64 Å. Magnetic susceptibility measurements at temperatures between 1.5 and 300 K for (Fe/Pd)n multilayers with FCC Fe yield a magnetic moment per Fe atom of μ=2.7±0.1 μB, which is about 20% larger compared to μ=2.2 μB for BCC Fe. We show that the occurrence of the large magnetic moment originates from FCC Fe being in the high spin (HS) state rather than from polarization effects of Pd at Fe/Pd interfaces.  相似文献   

17.
The nuclear and magnetic structure and the magnetic properties of the polycrystalline double perovskite Sr2MnWO6 have been studied. Rietveld analysis of neutron powder diffraction (NPD) data at T=295 K shows that the sample is tetragonal (space group P42/n, a=8.0119(4) Å, c=8.0141(8) Å). Some additional magnetic diffraction peaks were found in the NPD pattern at 10 K, which can be accounted for by antiferromagnetic ordering of spins at the Mn sites. The magnetic unit cell is doubled in all three unit axes directions (a=b=15.9984(8) Å, c=16.012(2) Å) and the manganese moments are coupled antiferromagnetically along the unit cell axes. The total magnetic moment of Mn2+ is found to be 2.27(7) μB. The antiferromagnetic behaviour was confirmed from magnetisation measurements. The transition from a paramagnetic to an antiferromagnetic state takes place at 13.0±0.1 K.  相似文献   

18.
The influence of buffer layer characteristics on the structural and magnetic properties of CoCrPt perpendicular media has been investigated. Thin (∼10–15 nm) buffer layers consisting of Ta/Ru, Ta/Hf, or amorphous (CoCrPt)Ta25 produced media layers having high perpendicular coercivity of nearly 3 kOe, but the coercivity was only 1.7 kOe when using a Ta/Ti buffer. X-ray diffraction rocking curves showed the highest degree of (0 0 0 2) texture for the Ta/Ru buffer. In-plane diffraction indicated that the Ta/Ru buffer also had the smallest lattice mismatch (5.6%) with the CoCrPt. Cross-sectional transmission electron microscopy showed that the Ta/Ru buffer promoted local epitaxy with the media layer. Amorphous transition regions were observed at the interfaces between the media and the Ta/Hf and Ta/Ti buffer layers. Some small CoCrPt grains were observed at the interface with the amorphous CoCrPtTa buffer.  相似文献   

19.
The magnetic properties of 53 aluminium-rich intermetallic compounds R6T4Al43 with R=rare-earth elements and T=Ti, V, Nb, Ta, Cr, Mo, W were investigated using polycrystalline samples and a SQUID magnetometer in the temperature range from 2 to 300 K with magnetic flux densities up to 5.5 T. The yttrium and lutetium compounds are Pauli paramagnetic, indicating that the transition metal atoms do not carry magnetic moments. The samarium compounds show van Vleck behavior and antiferromagnetic order with Néel temperatures of less than 12 K. Of these Sm6Ti4Al43 becomes metamagnetic. The ytterbium compounds show a mixed or intermediate valent behavior and no magnetic order down to 2 K. All other compounds obey the Curie–Weiss law above 30 K. Their effective magnetic moments correspond to the theoretical moments of the rare-earth ions. They show ferromagnetic or metamagnetic behavior with ordering temperatures all below 20 K. The magnetization curves of most compounds (recorded up to 5.5 T) reach about 50% of the theoretical magnetization already at 0.5 T. The gadolinium compounds are exceptional in that they reach at 0.5 T only about 10% of their theoretical magnetization. The crystal structures of the isotypic compounds Yb6V4Al43 and Yb6Ta4Al43 were refined from single-crystal X-ray data.  相似文献   

20.
The electronic structure of the Tm3Co11B4 compound has been studied by X-ray photoemission spectroscopy and ab initio self-consistent tight binding linear muffin tin orbital (TB LMTO) method. This compound crystallizes in the hexagonal Ce3Co11B4-type structure (P6/mmm). We have found a good agreement between the experimental XPS valence band spectra and theoretical ab initio calculations. The calculated total magnetic moment is equal to 13.635 μB/f.u. The magnetic moments on the Co atoms are antiparallel to the moments of the Tm atoms. Their values are depended on the local environment, especially on the number of the Co neighbors. The theoretical results are compared with other calculations, saturation magnetization measurements as well as neutron diffraction data for R3Co11B4 (R=Y, Nd, Gd, Tb).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号