首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
MgO doped lithium alumino phosphate glasses (PLA: P2O5+Li2O+Al2O3+MgO) were prepared by melt quenching technique. Raman spectra display three significant peaks at 698, 1164 and 1383 cm−1 attributed to: symmetric stretching vibrations of the bridging oxygen (BO) in the P–O–P chains, symmetric stretching vibrations of the PO2 groups, and the asymmetric vibrations vas(PO2) of the non-bridging oxygen (NBO) atoms, respectively. Also, the density, molar volumes and ion concentration have been discussed and correlated with the structural changes within the glassy matrix. Some optical constants such as refractive index and dispersion parameters (Eo: single-oscillator energy and Ed: dispersive energy) of the glasses were determined. Finally, the values of the optical band gap for direct and indirect allowed transitions have been determined from the absorption edge studies. It is deduced that the values of Eopt increase with increasing MgO content. It was assigned to structural changes induced from the formation of non-bridging oxygen. The Urbach energy (ΔE) was found to decrease from 0.578 to 0.339 eV with increasing MgO content from 0.5 to 2 mol.  相似文献   

2.
Undoped and Erbium (Er) doped zinc oxide (EZO) thin films were deposited on glass substrate by sol–gel method using spin coating technique with different doping concentration. EZO films were characterized using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), UV–VIS-NIR transmission and single beam z scan method under illumination of frequency doubled Nd:YAG laser. The deposited films were found to be well crystallized with hexagonal wurtzite structure having a preferential growth orientation along the ZnO (002) plane. A blue-shift was observed in the band gap of EZO films with increasing Er concentration. All the films exhibited a negative value of nonlinear refractive index (n2) at 532 nm which is attributed to the two photon absorption and weak free carrier absorption. Third order nonlinear optical susceptibility, χ(3) values of EZO films were observed in the remarkable range of 10? 6 esu. EZO (0.4 at.%) sample was found to be the best optical limiter with limiting threshold of 1.95 KJ/cm2.  相似文献   

3.
Time-resolved dynamics of plasma formation and bulk refractive-index modification in fluoride glass (ZBLAN) excited by a tightly focused femtosecond (130 fs) Ti:sapphire laser (λp=790 nm) was observed in situ. The femtosecond time-resolved pump–probe measurement with perpendicularly linear polarized beams was used to study the dynamics of both plasma formation and induced permanent structural transformation with refractive-index change. In the refractive-index domain, the lifetime of induced plasma formation is ~35 ps and structural transition time for forming the refractive-index change is ~80 ps. In the optical damage domain, however, the lifetime of induced plasma formation is ~40 ps and structural transition time for forming the optical damage is ~140 ps. We found that the process of refractive-index bulk modification is significantly different from that of optical cracks. From the diffraction efficiency of Kogelnik's coupled mode theory, the maximum value of refractive-index change (Δn) was estimated to be 1.3×10?2. By the scanning of fluoride glass on the optical X–Y–Z stages, the fabrication of internal grating with refractive-index modification was demonstrated in fluoride glass using tightly focused femtosecond laser.  相似文献   

4.
Wide band gap semiconductor alloys, MgxZ1−xTe (Z=Zn, Cd and Hg), are investigated over a full range of Mg compositions (0≤x≤1) using density functional theory (DFT). The variation in the lattice constant of MgxZ1−xTe is linear with the composition x, and all these alloys obey Vegrd's law. The CdTe (6.50 Å) and MgTe (6.44 Å) are lattice matched compounds, therefore the lattice constant of MgCdTe decreases slightly with the concentration x, whereas the lattice constant also decreases for MgHgTe but increases for MgZnTe. It is due to the fact that Mg has larger size than Zn and smaller size than Cd and Hg. The band gap of these compounds are calculated using the modified Becke–Johnson (mBJ) exchange potential as LDA and GGA are not effective in producing the experimental band gap of a strongly correlated electron system. The calculated band gaps of these compounds cover the range 0–3.5 eV and are consistent with the experimental band gaps. The band gaps exhibit nonlinear behavior or bowing effect with the change in concentration. The frequency dependent optical properties like dielectric functions, and indices of refraction of these ternary systems are also calculated and discussed.  相似文献   

5.
Undoped CdO films were prepared by sol–gel method. Transparent heterojunction diodes were fabricated by depositing n-type CdO films on the n-type GaN (0001) substrate. Current–voltage (IV) measurements of the device were evaluated, and the results indicated a non-ideal rectifying characteristic with IF/IR value as high as 1.17×103 at 2 V, low leakage current of 4.88×10−6 A and a turn-on voltage of about 0.7 V. From the optical data, the optical band gaps for the CdO film and GaN were calculated to be 2.30 eV and 3.309 eV, respectively. It is evaluated that interband transition in the film is provided by the direct allowed transition. The n-GaN (0001)/CdO heterojunction device has an optical transmission of 50–70% from 500 nm to 800 nm wavelength range.  相似文献   

6.
We investigated the electronic states of a single-crystal SrFeO2 epitaxial thin film in the valence-band and conduction-band regions using synchrotron-radiation X-ray photoemission and absorption spectroscopies. Fe 2p–3d resonant photoemission measurements revealed that the Fe 3d states have higher densities of states at binding energies of 3–5 eV and 5–8.5 eV in the valence-band region. The O K-edge X-ray absorption spectrum exhibited three peaks in the Fe 3d-derived conduction band hybridized with O 2p states; these can be assigned to Fe 3dxy, 3dxz + 3dyz, and 3dx2y2. In addition, the indirect bandgap value of the SrFeO2 film was determined to be 1.3 eV by transmission and absorption spectroscopies.  相似文献   

7.
Density functional theory (DFT) is performed on the structural and optical properties of undoped and N-doped Ta2O5. The optimized lattice constants of β-Ta2O5 are in good agreement with the experimental values. When O is replaced by N in Ta2O5, the substitutional doping of N in Ta2O5 clearly increases the refractive indices. The propagation of acoustic wave in two-dimensional (2D) photonic crystal of a honeycomb structure of air cylinder is investigated by the plane wave expansion method (PWEM). Our numerical results show that Ta2O5 has incomplete band gaps, indicating that only the TE mode appears. Ta2O4.5N0.5 is more suitable for background material. When a = 338 nm, r/a = 0.46, and Δ = 0.022 (ωa/2πc), a complete band gap appears in the red light range.  相似文献   

8.
Ground state non-covalent interactions between a macro cyclic calixarene receptor, namely, 4-tert-butylcalix[6]arene (1), and fullerenes (C60 and C70) were studied in toluene medium by absorption spectrophotometric method. Absorption band due to the charge transfer (CT) transition have been observed in the visible region between fullerenes and 1. Utilizing the CT absorption bands, various important physicochemical parameters like oscillator strength, resonance energy, transition dipole strength of the fullerene-1 complexes and ionization potential of 1 is determined in present investigations. From Jobs method of continuous variation, it is observed that both C60 and C70 form stable 1:1 complexes with 1. The most fascinating feature of the present study is that 1 binds selectively C70 compared to C60 as obtained from binding constant (K) data of C601 (KC601) and C701 (KC701) complexes, i.e., KC601 = 32,400 dm3·mol? 1 and KC701 = 110,000 dm3.mol? 1 and selectivity (KC701/KC601) = 3.4. 1H NMR analysis provides very good support in favor of strong binding between C70 and 1.  相似文献   

9.
Chromotrope 2R (CHR) films of different thicknesses have been prepared using spin coater. The material has been characterized using FT-IR, DTA and X-ray diffraction. The XRD of the material in powder and thin film forms showed polycrystalline structure with triclinic phase. Preferred orientation at the (1 1 4) plane is observed for the deposited films. Initial indexing of the XRD pattern was performed using “Crystalfire” computer program. Miller indices, h k l, values for each diffraction line in X-ray diffraction (XRD) spectrum were calculated and indexed for the first time. The DTA thermograms of CHR powder have been recorded in the temperature range 25–350 °C with different heating rates. The spectra of the infra-red absorption allow characterization of vibration modes for the powder and thin film. The effect of film thickness on the optical properties has been studied in the UV-visible-NIR regions. The films show high transmittance exceeding 0.90 in the NIR region λ > 800 nm. The intensity of the absorption peaks for λ < 800 nm are enhanced as the film thickness increase. The absorption bands are attributed to the (π–π*) and (n–π*) molecular transitions. The optical properties have been analyzed according to the single-oscillator model and the dispersion energy parameters as well as the free charge carrier concentration have been determined. The optical energy gap as well as the oscillator strength and electric dipole strength have been calculated.  相似文献   

10.
A brief overview of the superconducting energy gap studies on 122-type family of iron pnictides is given. It seems that the situation in the hole doped Ba1?xKxFe2As2 is well resolved. Most of the measurements including the presented here point contact Andreev reflection spectra agree on existence of multiple nodeless gaps in the excitation spectrum of this multiband system. The gaps have basically two sizes – the small one with a strength up to the BCS weak coupling limit and the large one with a very strong coupling with 2ΔL/kTc > 6–8. In the electron doped Ba(Fe1?xCox)2As2 the most of the experiments including our point contact measurements reveal in quite broadened spectra only a single gap with a strong coupling strength. The high precision ARPES measurements on this system identified two gaps but very close to each other, both showing a strong coupling with 2Δ/kTc  5 and 6, respectively.  相似文献   

11.
The mixed alkali borate xNa2O–(30−x)K2O–70B2O3 (5≤x≤25) glasses doped with 1 mol% of manganese ions were investigated using EPR and optical absorption techniques as a function of alkali content to look for ‘mixed alkali effect’ (MAE) on the spectral properties of the glasses. The EPR spectra of all the investigated samples exhibit resonance signals which are characteristic of the Mn2+ ions. The resonance signal at g≅2.02 exhibits a six line hyperfine structure. In addition to this, a prominent peak with g≅4.64, with a shoulder around g≅4.05 and 2.98, was also observed. From the observed EPR spectrum, the spin-Hamiltonian parameters g and A have been evaluated. It is interesting to note that some of the EPR parameters do show MAE. It is found that the ionic character increases with x and reaches a maximum around x=20 and thereafter it decreases showing the MAE. The number of spins participating in resonance (N) at g≅2.02 decreases with x and reaches a minimum around x=20 and thereafter it increases showing the MAE. It is also observed that the zero-field splitting parameter (D) increases with x, reaches a maximum around x=15 and thereafter decreases showing the MAE. The optical absorption spectrum exhibits a broad band around ∼20,000 cm−1 which has been assigned to the transition 6A1g(S)→4T1g(G). From ultraviolet absorption edges, the optical bandgap energies and Urbach energies were evaluated. It is interesting to note that the Urbach energies for these glasses decrease with x and reach a minimum around x=15. The optical band gaps obtained in the present work lie in the range 3.28–3.40 eV for both the direct and indirect transitions. The physical parameters of all the glasses were also evaluated with respect to the composition.  相似文献   

12.
Single crystals of undoped and Co-doped ZnIn2Se4 were grown by the vertical Bridgman technique. The optical energy gaps of the single crystals were investigated in the temperature range of 10–300 K from the optical absorption measurements. The indirect optical energy gaps of the single crystals were found to be 1.624 eV for undoped ZnIn2Se4 and 1.277 eV for Co-doped one at 300 K. Also, the direct optical energy gaps were given by 1.774 and 1.413 eV for undoped ZnIn2Se4 and co-doped one, respectively. The temperature dependence of the optical energy gaps was well fitted by the Varshni equation.  相似文献   

13.
Hot carrier cooling in few-layer and multilayer epitaxial graphene on SiC, and chemical vapor deposition (CVD) grown graphene transferred onto a glass substrate was investigated by transient absorption spectroscopy and imaging. Coupling to the substrate was found to play a critical role in charge carrier cooling. For both multilayer epitaxial graphene and monolayer CVD graphene, charge carriers transfer heat predominantly to intrinsic in-plane optical phonons of graphene. At high pump intensity, a significant number of optical phonons are accumulated, and the optical phonon lifetime presents a bottleneck for charge carrier cooling. This hot phonon effect did not occur in few-layer epitaxial graphene because of strong coupling to the substrate, which provided additional cooling channels. The limiting charge carrier lifetimes at high excitation densities were 1.8 ± 0.1 ps and 1.4 ± 0.1 ps for multilayer epitaxial graphene and monolayer CVD graphene, respectively. These values represent lower limits on the optical phonon lifetime for the graphene samples.  相似文献   

14.
A deep understanding of the character of superconductivity in the recently discovered Fe-based oxypnictides ReFeAsO1?xFx (Re = rare-earth) necessarily requires the determination of the number of the gaps and their symmetry in k space, which are fundamental ingredients of any model for the pairing mechanism in these new superconductors. In the present paper, we show that point-contact Andreev-reflection spectroscopy experiments performed on LaFeAsO1?xFx (La-1111) polycrystals with Tc  27 K and SmFeAsO0.8F0.2 (Sm-1111) polycrystals with Tc  53 K gave differential conductance curves exhibiting two peaks at low bias and two additional structures (peaks or shoulders) at higher bias voltages, an experimental situation quite similar to that observed by the same technique in pure and doped MgB2. The single-band Blonder–Tinkham–Klapwijk model is totally unable to properly fit the conductance curves, while the two-gap one accounts remarkably well for the shape of the whole experimental dI/dV vs. V curves. These results give direct evidence of two nodeless gaps in the superconducting state of ReFeAsO1?xFx (Re = La, Sm): a small gap, Δ1, smaller than the BCS value (2Δ1/kBTc  2.2–3.2) and a much larger gap Δ2 which gives a ratio 2Δ2/kBTc  6.5–9.0. In Sm-1111 both gaps close at the same temperature, very similar to the bulk Tc, and follow a BCS-like behaviour, while in La-1111 the situation is more complex, the temperature dependence of the gaps showing remarkable deviations from the BCS behaviour at T close to Tc.The normal-state conductance reproducibly shows an unusual, but different, shape in La-1111 and Sm-1111 with a depression or a hump at zero bias, respectively. These structures survive in the normal state up to T1  140 K, close to the temperatures at which structural and magnetic transitions occur in the parent, undoped compound.  相似文献   

15.
Successive Ionic Layer Adsorption and Reaction (SILAR) technique was used to deposit the CuInS2/In2S3 multilayer thin film structure at room temperature. The as-deposited film was annealed at 100, 200, 300, 400 and 500 °C for 30 min in nitrogen atmosphere and the annealing effect on structural, optical and photoelectrical properties of the film was investigated. X-ray diffraction (XRD) and optical absorption spectroscopy were used for structural and optical studies. Current–Voltage (I–V) measurements were performed in dark environment and under 15, 30 and 50 mW/cm2 light intensity to investigate the photosensitivity of the structure. Also, the electrical resistivity of the film was determined in the temperature range of 300–470 K. It was found that annealing temperature drastically affects the structural, optical and photoelectrical properties of the CuInS2/In2S3 films.  相似文献   

16.
Cd0.9−xZn0.1CuxS (0≤x≤0.06) nanoparticles were successfully synthesized by a conventional chemical co-precipitation method at room temperature. Crystalline phases and optical absorption of the nanoparticles have been studied by X-ray diffraction (XRD) and UV–visible spectrophotometer. XRD confirms the phase singularity of the synthesized material, which also confirmed the formation of Cd–Zn–Cu–S alloy nanocrystals rather than separate nucleation or phase formation. Elemental composition was examined by the energy dispersive X-ray analysis and the microstructure was examined by scanning electron microscope. The blue shift of absorption edge below Cu=2% is responsible for dominance of Cu+ while at higher Cu concentration dominated Cu2+, d–d transition may exist. It is suggested that the addition of third metal ion (Cu2+/Cu+) is an effective way to improve the optical property and stability of the Cd0.9Zn0.1S solid solutions. When Cu is introduced, stretching of Cd–Zn–Cu–S bond is shifted lower wave number side from 678 cm−1 (Cu=0%) to 671 cm−1 (Cu=6%) due to the presence of Cu in Cd–Zn–S lattice and also the size effect. The variation in blue band emission peak from 456 nm (∼2.72 eV) to 482 nm (∼2.58 eV) by Cu-doping is corresponding to the inter-band radiation combination of photo-generated electrons and holes. Intensity of red band emission centered at 656 nm significantly increased up to Cu=4%; beyond 4% it is decreased due to the quenching of Cu concentration.  相似文献   

17.
A systematic study on the modification of optical properties in mechanically milled ZnO powder has been reported here. The average grain size of the powder becomes ~20 nm within 4 h of milling. Fluctuations of average grain size have been noticed at the initial stage of milling (within 15 min). Changes in grain morphology with milling have also been noticed in scanning electron micrographs of the samples. Room temperature optical absorption data shows a systematic red shift of absorption band edge (~3.25 eV). The band tail parameter (extracted from the optical absorption just below the band edge) follows a simple exponential relation with the inverse of the average grain size. Significant increase of the band tail parameter has been noticed at low grain size regime. It has been analyzed that high values of band tail parameter is a representative of VZnVO type divacancy clusters. Room temperature photoluminescence spectra show decrease (except for 120 min milling) of band edge emission intensity with increase of milling time. Subsequent decrease of sub-band edge emission is, however, less prominent. The variation of PL intensity ratio (intensity at band edge peak with that at 2.3 eV) follows simple exponential decrease with the increase of band tail parameter. This indeed shows that band edge emission in ZnO is related with the overall disorder in the system, not grain size induced only.  相似文献   

18.
Xi Bao  Feng Liu  Xiaoli Zhou 《Optik》2012,123(16):1474-1477
Prototype devices based on black silicon have been fabricated by microstructuring 250 μm thick multicrystalline n doped silicon wafers using femtosecond pulsed laser in ambient gas of SF6 to measure its photovoltaic properties. The enhanced optical absorption of black silicon extends across the visible region and all the black silicons prepared in this work exhibit enhanced optical absorption close to 90% from 300 nm to 800 nm. The highest open-circuit voltage (Voc) and short-circuit current (Isc) under the illumination of He–Ne continuous laser at 632.8 nm were measured to be 53.3 mV and 0.11 mA, respectively at a maximum power conversion efficiency of 1.44%. Upon excitation with He–Ne continuous laser at 632.8 nm, external quantum efficiency (EQE) of black silicon as high as 112.9% has also been observed. Development of black silicon for photovoltaic purposes could open up a new perspective in achieving high efficient silicon-based solar cell by means of the enhanced optical absorption in the visible region. The current–voltage characteristic and photo responsivity of these prototype devices fabricated with microstructured silicon were also investigated.  相似文献   

19.
Single crystals of the layered compound TlInS2 were grown by direct synthesis of their constituents. The spectral and optical parameters have been determined using spectrophotometric measurements of transmittance and reflectance in the wavelength range 200–2500 nm. Absorption spectra of thin layers of TlInS2 crystals are used to study the energy gap and the interband transitions of the compound in the energy region 2–2.4 eV. The dispersion curve of the refractive index shows an anomalous dispersion in the absorption region and a normal one in the transmitted region. The direct and indirect band gaps were determined to be 2.34 and 2.258 eV, respectively. Photoconductivity measurements at room temperature resolve the structure that can be identified with the optical transition.  相似文献   

20.
In this work, nanocrystalline GaN film was grown on a c-plane sapphire substrate by metal-organic vapor phase epitaxy (MOVPE). The structural and optical properties of the nanocrystalline GaN thin film were studied. The morphological and structural properties of GaN film were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. According to the X-ray diffraction spectrum, a GaN film was formed with a wurtzite structure, which is the stable phase. The optical parameters were determined using spectrophotometric measurements of transmittance and reflectance in the wavelength range 200–2500 nm. The analysis of the spectral behavior of the absorption coefficient in the intrinsic absorption region reveals a direct allowed transition with a band gap of 3.34 eV. The dispersion of the refractive index is discussed in terms of the single oscillator Wemple–Didomenico (WD) model. The single oscillator energy (Eo), the dispersion energy (Ed), the high frequency dielectric constant (ε), the lattice dielectric constant (εL) and the free charge carrier concentration (N) were estimated. From the optical dielectric analysis, the optical conductivity, volume and surface energy loss functions were calculated. Moreover, the third-order nonlinear optical susceptibility χ(3) was also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号