共查询到20条相似文献,搜索用时 15 毫秒
1.
喷流干扰是高超声速飞行高精度控制的一种有效手段,研究者们以往大部分都主要集中于连续流条件下喷流干扰效应的机理研究,并给出了喷流干扰流场的典型结构,而稀薄流条件下喷流干扰特性的实验数据还十分匮乏.本文利用JFX爆轰激波风洞产生高超声速稀薄自由流,基于平板模型开展不同喷流压力和自由来流参数对横向喷流干扰特性影响的实验研究,采用高速纹影成像及图像处理技术,获得稀薄流条件下喷流干扰流场演化过程及流场结构的变化规律.相比于无喷流条件形成的流场,横向喷流与稀薄自由流相互作用形成的流场结构更为复杂,喷流压力由于受到稀薄来流的扰动,斜激波会短暂穿透喷流干扰流场并延伸至楔形体上部.喷流干扰流场内桶状激波的影响范围随着喷流压力的升高而逐渐变宽,位于三波点上游的斜激波空间位置不会随喷流压力的变化而改变,而位于三波点下游的弓形激波则向上游移动,当喷流压力过低时,桶状激波不会与其他两种激波交汇形成三波点.高超声速稀薄来流压力的降低同样会使桶状激波的影响范围变宽,弓形激波同样也会向上游移动,但基本不会对斜激波空间位置产生任何影响. 相似文献
2.
3.
采用带有非平衡相变模型的数值方法对高超声速流动中液滴蒸发的影响进行了研究,重点探讨了液滴蒸发对斜激波下游区域流场和劈面参数的影响。研究结果表明:液滴在激波后区域的蒸发存在弛豫现象,蒸发弛豫过程与激波强度相关,并影响模型表面气动参数的均匀性;当偏转角从3°增大至16°时,研究发现特别是偏转角为10°时,激波强度刚好能使液滴在整个激波下游区域完全蒸发,此时蒸发引起的流场参数不均性影响最大,与不考虑蒸发时相比,液滴质量含量、压强、静温减小幅度分别达到27.2g/kg、401Pa、54K,该三项参数变化量的比分别达到96.8%、4.8%、14.2%。 相似文献
4.
高超声速溢流冷却实验研究 总被引:1,自引:1,他引:1
高超声速溢流冷却是一种新型的飞行器热防护方法,基本思想为:在高热流区布置溢流孔,控制冷却液以溢流方式流出,之后通过飞行器表面摩阻作用展布为液膜,形成热缓冲层以降低飞行器表面热流. 目前,溢流冷却技术还处于探索阶段,实现工程应用前还需开展大量的实验验证和机理研究工作. 本文首次开展溢流冷却的实验研究工作,采用热流测量、液膜厚度测量及液膜流动特性观测技术,搭建了完善的溢流冷却风洞实验平台,对溢流冷却热防护性能和高超声速条件下液膜流动规律进行了初步研究. 研究表明:(1) 高超声速流场中通过溢流能够在飞行器表面形成液膜并有效隔离外部高温气流,可降低飞行器表面热流率;(2) 楔面上的液膜前缘流动是一个逐渐减速的过程,增加冷却液流量液膜厚度变化不明显,但液膜前缘运动速度增大;(3) 液膜层存在表面波,在时间和空间方向发生演化,导致液膜厚度的微弱扰动;(4) 液膜层存在横向展宽现象,即液膜层宽度大于溢流缝宽度. 原因是液膜层与流场边界层条件不匹配,存在压力梯度,迫使冷却液向低压区流动,从而展宽液膜层,并且流量越高,横向展宽现象越明显. 相似文献
5.
6.
通过数值模拟, 对高超声速尾迹流场进行了研究, 对其尾迹流动的失稳过程进行了分析.选取计算模型为圆球,Ma= 6.0, Re = 1.71\times 10^6(Re以球头半径为参考长度). 通过数值模拟,首先得到的流动是稳定解,在底部发展出一个主分离区和一个二次分离区,流动是轴对称状态. 不添加任何扰动继续进行计算,发现底部流场缓慢发展出微弱的非定常流动. 随后,该现象继续发展,出现明显的结构失稳,得到了无量纲周期为12.0的周期解. 给出了高超声速圆球绕流尾迹结构的周期性演化过程,对其涡系结构的演化及奇点特征进行了分析. 研究表明该数值模拟方法可用于底部流动稳定性问题的研究,同时证实了高超声速底部流动也存在流动不稳定性. 相似文献
7.
为使返回舱安全、稳定、可靠地飞行,准确地计算其周围的复杂绕流流场,对飞船的初步设计是十分必要的。用Harten-Yee的二阶迎风TVD有限差分格式求解薄层N-S方程,模拟了返回舱三维高超声速流场,M_∞=7.35,Re_∞=7.5×10 ̄5,α=10°、20°。给出了详细的绕流结构,不同攻角、不同子午面上的物面压力分布与Moseley和wells的实验数据进行了比较,符合较好。通过分析表明,在一定的攻角下,倒锥体上低压区压力的计算精度,对力矩系数及压心位置仍有明显的影响。 相似文献
8.
高超声速飞行器采用乘波构形后,将对其模型研究带来新挑战,主要体现在建模过程中应充分考虑气动、推进与控制作用相互耦合,因此为了保证建模的准确性,有必要引入新方法来研究高超声速飞行器的模型.本文基于高超声速空气动力学理论,提出了一种高超声速飞行器纵向模型研究的新方法,该方法采用斜激波理论、普朗特-迈耶关系式及瑞利流原理来估... 相似文献
9.
10.
高超声速飞行器关键部位气动热计算 总被引:3,自引:0,他引:3
运用快速算法对高超声速飞行器外表面的一些关键部位经受的气动热环境进行计算分析。在理论和经验公式的基础上,利用轴对称比拟法考虑攻角影响,采用局部相似性解及参考焓等方法确定飞行器有攻角再入的表面气动加热,发展了一套高超声速飞行器关键部位气动热的计算方法。以钝锥为算例对计算方法进行了验证,结果表明,本文所述方法具有较高的效率和精度。 相似文献
11.
12.
13.
14.
乘波体的高升阻比优势使其在高超声速飞行器设计中极具应用前景. 在实际工程应用中, 为了满足防热要求, 乘波体前缘必须进行钝化处理, 前缘钝化对乘波体气动性能会产生显著影响. 因此, 原始尖前缘最优乘波体并不能保证钝化后仍为最优. 针对这一问题, 首先研究了前缘钝化对不同构型升阻特性的影响程度和作用机理. 结果表明: 前缘钝化会造成乘波体升力小幅度降低, 阻力大幅增加, 升阻比显著降低; 其中钝前缘本身的波阻在阻力增量中起主导作用, 而钝前缘本身的摩阻增加量与物面的摩阻降低量十分接近. 基于上述结果, 提出了一种高效评估钝前缘乘波体气动力的方法, 并结合遗传算法, 开展了直接考虑前缘钝化影响的乘波构型优化设计研究, 获得了钝前缘最优构型. 通过CFD数值模拟对最优构型的气动力特性进行评估, 结果表明: 在不同飞行高度、不同升力和不同钝化半径约束下, 相比尖前缘最优构型, 钝前缘最优构型宽度变窄, 相同纵向位置处的后掠角增大, 且升阻比显著提升. 在M∞ = 15, H = 50 km, CL = 0.3约束条件下, 钝化半径R = 10 mm的钝前缘最优构型设计点升阻比相比尖前缘最优构型提升量可达9.32%. 相似文献
15.
高超声速全动舵面的热气动弹性研究 总被引:1,自引:0,他引:1
根据分层求解原理对考虑舵轴及舵轴与机身间隙影响下的高超声速飞行器全动舵面进行了热气动弹性分析. 采用计算流体力学(CFD)方法求解N-S 方程计算舵面周围的热环境,在该温度分布下根据结构壁面温度计算热流,应用傅里叶(Fourier)定律确定结构热传导过程及其内部温度分布,进而分析结构考虑热应力和温度对材料属性的影响下的模态固有特性,结合基于CFD 技术的当地流活塞理论,在状态空间中对舵面进行了热气动弹性分析. 结果表明,气动加热效应改变了结构的固有频率以及弯扭耦合频率之间的间距,进而改变了结构的颤振速度和颤振频率;随着热传导的进行,结构固有频率和颤振频率先快速减小后基本保持不变,弯扭耦合频率之间的间距和颤振速度则先快速减小后略有上升;舵轴及舵轴与机身间隙的存在对舵面的固有频率、颤振频率、颤振速度都产生了影响,使其最大下降了6%. 相似文献
16.
近似黎曼解对高超声速气动热计算的影响研究 总被引:2,自引:1,他引:2
高超声速流场计算一般采用TVD型格式,这些格式中,大多采用了不同形式的近似黎曼解. 通过分析和数值验证,论述了激波捕捉格式中近似黎曼解的耗散性质,说明其对高超声速热流计算的影响. 数值实验证明,采用低耗散格式可大大提高热流计算精度,降低热流计算对网格的依赖程度,从而获得精确的热流数值解. 相似文献
17.
高超声速飞行器控制研究综述 总被引:16,自引:0,他引:16
高超声速飞行器控制研究主要讨论吸气式高超声速飞行器巡航控制问题和无动力高超声速飞行器返回再入控制问题.吸气式的高超声速飞行器主要针对于两种构型:锥体加速器构型和X-30构型,无动力高超声速飞行器主要考虑X-33和X-38构型.分别对锥体加速器构型、X-30构型和再入模式的动力学模型和控制进行了综述,并指出了近来高超声速飞行器控制研究的热点问题. 相似文献
18.
在高超声速边界层中,第一模态和第二模态是与转捩有关的两个主要不稳定模态.除了不稳定模态,还存在一类稳定模态,其相速度在前缘接近快声波的相速度称为快模态.在感受性过程中,这类模态对激发边界层中不稳定模态起着很重要的作用.前缘感受性理论解释了边界层外扰动激发边界层中第一模态波的机理.针对高超声速平板边界层,利用相似性解剖面作为基本流,采用线性稳定性理论和直接数值模拟的方法研究了快模态和慢模态的稳定性行为.研究发现模态转化的位置与马赫数有关.根据线性稳定性理论的结果定义了临界频率.当扰动频率高于临界频率,第一模态与第二模态同支;而当扰动频率低于临界频率,第一模态与第二模态的共轭模态同支.借助稳定性方程的伴随方程分析了直接数值模拟的结果.直接数值模拟结果表明不论上游是快模态还是慢模态,当它们经过第二模态的不稳定区,它们都会演化成第二模态. 这可用模态在非平行流中传播的特征来解释. 相似文献
19.
飞行器高超声速飞行过程中所承受对流加热和辐射加热可能具有相当的量级,因此合理准确预测气动加热需要将二者进行综合考虑.文章发展了具有非玻尔兹曼电子能级分布和振动能级分布的高温空气碰撞辐射模型,并耦合一维激波后流动方程计算不同飞行条件下激波后的非平衡流动特性,采用逐线辐射输运模型计算获得激波后非平衡辐射特性、辐射强度和辐射输运通量,深入比较分析了不同飞行高度和马赫数对非平衡流动和辐射输运过程的影响.计算结果表明对于高空高马赫飞行条件,其波后流动存在显著的热力学非平衡、化学非平衡和能级非平衡特征,在近激波区域高振动能级和原子高束缚电子激发态明显低于玻尔兹曼分布.在高空高马赫条件下真空紫外辐射占据主导地位,主要是由高能原子束缚-束缚跃迁造成的.随着高度和马赫数的下降,激波层内气体解离和电离程度降低,原子辐射贡献下降,分子辐射贡献增加,导致红外、可见光和紫外波段的辐射输运增强,真空紫外辐射输运过程减弱. 相似文献
20.
表面台阶引起的高超声速湍流边界层分离 总被引:2,自引:1,他引:2
介绍了圆柱、方柱和二维台阶前干扰热流分布及油流和液晶热图的实验结果。来流马赫数M_1=5—9,雷诺数Re=(2—5)×10 ̄7/m,台阶高度与边界层厚度比h/δ=0.06— 2.5.实验发现干扰压力和热流高峰值出现在台阶前0.15倍台阶高度处的再附点附近,方柱台阶前压力和热流最高峰值不在中心线上,而在两侧角之内0.5倍台阶高度处附近,结果还表明干扰区几何特征参数,如分离距离、热流峰值和谷值点位置,与马赫数、雷诺数和台阶展宽无关,只随台阶高度线性增加。 相似文献