共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two benzoxazinone compounds as epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors were synthesized and characterized by NMR and high-resolution mass spectrometry (HRMS). An efficient chlorination method was introduced in the synthesis of 4-chloro-2-oxo-2H-benzoxazinone-6-yl acetate. The inhibition activities of the target compounds and the important intermediates for EGFR tyrosine kinase activity in vitro were determined. 相似文献
3.
Abdulmalik S. Altamimi Adel S. El-Azab Sami G. Abdelhamid Mubarak A. Alamri Ashraf H. Bayoumi Safar M. Alqahtani Alhumaidi B. Alabbas Ali I. Altharawi Manal A. Alossaimi Menshawy A. Mohamed 《Molecules (Basel, Switzerland)》2021,26(10)
A new series of 8-methoxy-2-trimethoxyphenyl-3-substituted quinazoline-4(3)-one compounds were designed, synthesized, and screened for antitumor activity against three cell lines, namely, Hela, A549, and MDA compared to docetaxel as reference drug. The molecular docking was performed using Autodock Vina program and 20 ns molecular dynamics (MD) simulation was performed using GROMACS 2018.1 software. Compound 6 was the most potent antitumor of the new synthesized compounds and was evaluated as a VEGFR2 and EGFR inhibitor with (IC50, 98.1 and 106 nM respectively) compared to docetaxel (IC50, 89.3 and 56.1 nM respectively). Compounds 2, 6, 10, and 8 showed strong cytotoxic activities against the Hela cell line with IC50 of, 2.13, 2.8, 3.98, and 4.94 µM, respectively, relative to docetaxel (IC50, 9.65 µM). Compound 11 showed strong cytotoxic activity against A549 cell line (IC50, 4.03 µM) relative to docetaxel (IC50, 10.8 µM). Whereas compounds 6 and 9 showed strong cytotoxic activity against MDA cell line (IC50, 0.79, 3.42 µM, respectively) as compared to docetaxel (IC50, 3.98 µM). 相似文献
4.
The vascular endothelial growth factor (VEGF) and its receptor tyrosine kinases VEGFR-2 or kinase insertdomain receptor (KDR) have emerged as attractive targets for the design of novel anticancer agents. In the present work, molecular docking method combined with three dimensional quantitative structure-activity relationships (comparative molecular field analysis (CoMFA) and comparative molecular similarity indice analysis (CoMSIA)) to analyze the possible interactions between KDR and those derivatives which acted as selective inhibitors. The CoMFA and CoMSIA models gave a cross-validated coefficient Q2 of 0.713 and 0.549, non-cross-validated R2 values of 0.974 and 0.878, and predicted R2 values of 0.966 and 0.823, respectively. The 3D contour maps generated by the CoMFA and CoMSIA models were used to identify the key structural requirements responsible for the biological activity. The information obtained from 3D-QSAR and docking studies were very helpful to design novel selective inhibitors of KDR with desired activity and good chemical property. 相似文献
5.
A.K. Gupta S.S. Bhunia V.M. Balaramnavar 《SAR and QSAR in environmental research》2013,24(3-4):239-263
A pharmacophore model has been developed using diverse classes of epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitors useful in the treatment of human tumours. Among the top 10 generated hypotheses, the second hypothesis, with one hydrogen bond acceptor, one ring aromatic and three hydrophobic features, was found to be the best on the basis of Cat Scramble validation as well as test set prediction (r training?=?0.89, r test?=?0.82). The model also maps well to the external test set molecules as well as clinically active molecules and corroborates the docking studies. Finally, 10 hits were identified as potential leads after virtual screening of ZINC database for EGFR TK inhibition. The study may facilitate the designing and discovery of novel EGFR TK inhibitors. 相似文献
6.
7.
Utid Suriya Panupong Mahalapbutr Watchara Wimonsong Sirilata Yotphan Kiattawee Choowongkomon Thanyada Rungrotmongkol 《Molecules (Basel, Switzerland)》2022,27(24)
Combating acquired drug resistance of EGFR tyrosine kinase (TK) is a great challenge and an urgent necessity in the management of non-small cell lung cancers. The advanced EGFR (L858R/T790M/C797S) triple mutation has been recently reported, and there have been no specific drugs approved for this strain. Therefore, our research aimed to search for effective agents that could impede the function of EGFR (L858R/T790M/C797S) TK by the integration of in silico and in vitro approaches. Our in-house quinoxalinone-containing compounds were screened through molecular docking and their biological activity was then verified by enzyme- and cell-based assay. We found that the four quinoxalinone-containing compounds including CPD4, CPD15, CPD16, and CPD21 were promising to be novel EGFR (L858R/T790M/C797S) TK inhibitors. The IC50 values measured by the enzyme-based assay were 3.04 ± 1.24 nM; 6.50 ± 3.02 nM,10.50 ± 1.10 nM; and 3.81 ± 1.80 nM, respectively, which are at a similar level to a reference drug; osimertinib (8.93 ± 3.01 nM). Besides that, they displayed cytotoxic effects on a lung cancer cell line (H1975) with IC50 values in the range of 3.47 to 79.43 μM. In this proposed study, we found that all screened compounds could interact with M793 at the hinge regions and two mutated residues including M790 and S797; which may be the main reason supporting the inhibitory activity in vitro. The structural dynamics revealed that the screened compounds have sufficient non-native contacts with surrounding amino acids and could be well-buried in the binding site’s cleft. In addition, all predicted physicochemical parameters were favorable to be drug-like based on Lipinski’s rule of five, and no extreme violation of toxicity features was found. Altogether, this study proposes a novel EGFR (L858R/T790M/C797S) TK inhibitor scaffold and provides a detailed understanding of compounds’ recognition and susceptibility at the molecular level. 相似文献
8.
《Analytical letters》2012,45(18):2707-2716
Selective energy transfer between quantum dots and gold nanoparticles was used to simultaneously detect mutations in the epidermal growth factor receptor (EGFR) gene. We functionalized the surface of gold nanoparticles and green and red-emitting quantum dots using four different probe DNAs that were designed to be a perfect complementary to an in-frame deletion mutation in exon 19 or L858 R point mutation in exon 21 of EGFR. We found that the presence of the deletion mutation in exon 19 in target oligonucleotides caused fluorescence quenching at 525 nm due to energy transfer from green-emitting quantum dots to gold nanoparticles, whereas point mutation in exon 21 resulted in quenching at 620 nm due to energy transfer from red-emitting quantum dots to gold nanoparticles. This method could successfully be used to simultaneously detect the presence of two types of mutations in EGFR. We also defined a parameter (i.e., the extent of quenching) to quantify fluorescence quenching phenomenon. By varying the fraction of mutant type DNA in target oligonucleotides, we showed that detection sensitivity based on the extent of quenching was about 5%, which is lower than the conventional direct sequencing method. 相似文献
9.
Site‐Specific Protection and Dual Labeling of Human Epidermal Growth Factor (hEGF) for Targeting,Imaging, and Cargo Delivery 下载免费PDF全文
Dr. Michael H. Sonntag Jenny Ibach Dr. Lidia Nieto Dr. Peter J. Verveer Prof. Dr. Luc Brunsveld 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(20):6019-6026
Well‐defined human epidermal growth factor (hEGF) constructs featuring selectively addressable labels are urgently needed to address outstanding questions regarding hEGF biology. A protein‐engineering approach was developed to provide access to hEGF constructs that carry two cysteine‐based site‐specific orthogonal labeling sites in multi‐milligram quantities. Also, a site‐selective (de)protection and labeling approach was devised, which allows selective modification of these hEGF constructs. The hEGF, featuring three native disulfide bonds, was expressed featuring additional sulfhydryl groups, in the form of cysteine residues, as orthogonal ligation sites at both the N and C termini. Temporary protection of the N‐terminal cysteine unit, in the form of a thiazolidine ring, avoids interference with protein folding and enables sequential labeling in conjunction with the cysteine residue at the C terminus. Based on thus‐generated hEGF constructs, sequential and site‐specific labeling with a variety of molecular probes could be demonstrated, thus leading to a biological fully functional hEGF with specifically incorporated fluorophores or protein cargo and native cellular targeting and uptake profiles. Thus, this novel strategy provides a robust entry to high‐yielding access of hEGF and rapid and easy site‐specific and multifunctional dual labeling of this growth factor. 相似文献
10.
Thitinan Aiebchun Panupong Mahalapbutr Atima Auepattanapong Onnicha Khaikate Supaphorn Seetaha Lueacha Tabtimmai Chutima Kuhakarn Kiattawee Choowongkomon Thanyada Rungrotmongkol 《Molecules (Basel, Switzerland)》2021,26(8)
Epidermal growth factor receptor (EGFR), overexpressed in many types of cancer, has been proved as a high potential target for targeted cancer therapy due to its role in regulating proliferation and survival of cancer cells. In the present study, a series of designed vinyl sulfone derivatives was screened against EGFR tyrosine kinase (EGFR-TK) using in silico and in vitro studies. The molecular docking results suggested that, among 78 vinyl sulfones, there were eight compounds that could interact well with the EGFR-TK at the ATP-binding site. Afterwards, these screened compounds were tested for the inhibitory activity towards EGFR-TK using ADP-Glo™ kinase assay, and we found that only VF16 compound exhibited promising inhibitory activity against EGFR-TK with the IC50 value of 7.85 ± 0.88 nM. In addition, VF16 showed a high cytotoxicity with IC50 values of 33.52 ± 2.57, 54.63 ± 0.09, and 30.38 ± 1.37 µM against the A431, A549, and H1975 cancer cell lines, respectively. From 500-ns MD simulation, the structural stability of VF16 in complex with EGFR-TK was quite stable, suggesting that this compound could be a novel small molecule inhibitor targeting EGFR-TK. 相似文献
11.
12.
Vascular endothelial growth factors(VEGFs)respectively bind to each of three receptor tyrosine kinases (RTKs),known as Flt-1,KDR and Flt-4.Since VEGFs and their respective families of receptor tyrosine... 相似文献
13.
SUN Bing YIN Xiu'e ZHANG Jin HUANG Jian XU Yue ZHANG Furong WANG Jinhui WANG Guoqing HU Chun 《高等学校化学研究》2015,31(6):936-941
Based on the molecular docking studies, which were performed to position Erlotinib and the target compounds into the active site of the epidermal growth factor receptor(EGFR) to determine the probable binding model, a novel series of 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives as the novel potential EGFR kinase inhibitors was designed and synthesized. The antitumor activity of all the target compounds against human pulmonary carcinoma cell line A549 has been screened. Of all the target compounds, 4-[2-(1-piperidyl)carbonylmethoxyl- phenthio]-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine(7j) demonstrated the most potent antitumor activity. Several of the target compounds exhibited moderate antitumor activity. The preliminary structure-activity relationships of some target compounds were summarized. 相似文献
14.
Nurmaya Effendi Kenji Mishiro Kazuhiro Shiba Seigo Kinuya Kazuma Ogawa 《Molecules (Basel, Switzerland)》2021,26(1)
The purpose of this study is to develop peptide-based platelet-derived growth factor receptor β (PDGFRβ) imaging probes and examine the effects of several linkers, namely un-natural amino acids (D-alanine and β-alanine) and ethylene-glycol (EG), on the properties of Ga-DOTA-(linker)-IPLPPPRRPFFK peptides. Seven radiotracers, 67Ga-DOTA-(linker)-IPLPPPRRPFFK peptides, were designed, synthesized, and evaluated. The stability and cell uptake in PDGFRβ positive peptide cells were evaluated in vitro. The biodistribution of [67Ga]Ga-DOTA-EG2-IPLPPPRRPFFK ([67Ga]27) and [67Ga]Ga-DOTA-EG4-IPLPPPRRPFFK ([67Ga]28), which were selected based on in vitro stability in murine plasma and cell uptake rates, were determined in BxPC3-luc-bearing nu/nu mice. Seven 67Ga-labeled peptides were successfully synthesized with high radiochemical yields (>85%) and purities (>99%). All evaluated radiotracers were stable in PBS (pH 7.4) at 37 °C. However, only [67Ga]27 and [67Ga]28 remained more than 75% after incubation in murine plasma at 37 °C for 1 h. [67Ga]27 exhibited the highest BxPC3-luc cell uptake among the prepared radiolabeled peptides. As regards the results of the biodistribution experiments, the tumor-to-blood ratios of [67Ga]27 and [67Ga]28 at 1 h post-injection were 2.61 ± 0.75 and 2.05 ± 0.77, respectively. Co-injection of [67Ga]27 and an excess amount of IPLPPPRRPFFK peptide as a blocking agent can significantly decrease this ratio. However, tumor accumulation was not considered sufficient. Therefore, further probe modification is required to assess tumor accumulation for in vivo imaging. 相似文献
15.
16.
Dr. Jean-François Gaucher Dr. Marie Reille-Seroussi Dr. Sylvain Broussy 《Chemistry (Weinheim an der Bergstrasse, Germany)》2022,28(48):e202200465
Macrocyclization constraints are widely used in the design of protein ligands to stabilize their bioactive conformation and increase their affinities. However, the resulting changes in binding entropy can be puzzling and uncorrelated to affinity gains. Here, the thermodynamic (Isothermal Titration Calorimetry) and structural (X-ray, NMR and CD) analysis of a complete series of lactam-bridged peptide ligands of the vascular endothelial growth factor, and their unconstrained analogs are reported. It is shown that differences in thermodynamics arise mainly from the folding energy of the peptide upon binding. The systematic reduction in conformational entropy penalty due to helix pre-organization can be counterbalanced by an unfavorable vibrational entropy change if the constraints are too rigid. The gain in configurational entropy partially escapes the enthalpy/entropy compensation and leads to an improvement in affinity. The precision of the analytical ITC method makes this study a possible benchmark for constrained peptides optimization. 相似文献
17.
Zahid Rafiq Bhat Manvendra Kumar Nisha Sharma Umesh Prasad Yadav Tashvinder Singh Gaurav Joshi Brahmam Pujala Mohd Raja Joydeep Chatterjee Kulbhushan Tikoo Sandeep Singh Raj Kumar 《Molecules (Basel, Switzerland)》2022,27(17)
Tyrosine kinase inhibitors are validated therapeutic agents against EGFR-mutated non-small cell lung cancer (NSCLC). However, the associated critical side effects of these agents are inevitable, demanding more specific and efficient targeting agents. Recently, we have developed and reported a non-covalent imidazo[1,2-a]quinoxaline-based EGFR inhibitor (6b), which showed promising inhibitory activity against the gefitinib-resistant H1975(L858R/T790M) lung cancer cell line. In the present study, we further explored the 6b compound in vivo by employing the A549-induced xenograft model in nude mice. The results indicate that the administration of the 6b compound significantly abolished the growth of the tumor in the A549 xenograft nude mice. Whereas the control mice bearing tumors displayed a declining trend in the survival curve, treatment with the 6b compound improved the survival profile of mice. Moreover, the histological examination showed the cancer cell cytotoxicity of the 6b compound was characterized by cytoplasmic destruction observed in the stained section of the tumor tissues of treated mice. The immunoblotting and qPCR results further signified that 6b inhibited EGFR in tissue samples and consequently altered the downstream pathways mediated by EGFR, leading to a reduction in cancer growth. Therefore, the in vivo findings were in corroboration with the in vitro results, suggesting that 6b possessed potential anticancer activity against EGFR-dependent lung cancer. 6b also exhibited good stability in human and mouse liver microsomes. 相似文献
18.
P. K. Singh 《SAR and QSAR in environmental research》2017,28(3):221-233
Extensively validated 3D pharmacophore models for ALK (anaplastic lymphoma kinase) and EGFR (T790M) (epithelial growth factor receptor with acquired secondary mutation) were developed. The pharmacophore model for ALK (r2 = 0.96, q2 = 0.692) suggested that two hydrogen bond acceptors and three hydrophobic groups arranged in 3-D space are essential for the binding affinity of ALK inhibitors. Similarly, the pharmacophore model for EGFR (T790M) (r2 = 0.92, q2 = 0.72) suggested that the presence of a hydrogen bond acceptor, two hydrogen bond donors and a hydrophobic group plays vital role in binding of an inhibitor of EGFR (T790M). These pharmacophore models allowed searches for novel ALK and EGFR (T790M) dual inhibitors from multiconformer 3D databases (Asinex, Chembridge and Maybridge). Finally, the eight best hits were selected for molecular dynamics simulation, to study the stability of their complexes with both proteins and final binding orientations of these molecules. After molecular dynamics simulations, one hit has been predicted to possess good binding affinity for both ALK and EGFR (T790M), which can be further investigated for its experimental in-vitro/in-vivo activities. 相似文献
19.
Naglaa M. Ahmed Mahmoud M. Youns Moustafa K. Soltan Ahmed M. Said 《Molecules (Basel, Switzerland)》2021,26(7)
Scaffolds hybridization is a well-known drug design strategy for antitumor agents. Herein, series of novel indolyl-pyrimidine hybrids were synthesized and evaluated in vitro and in vivo for their antitumor activity. The in vitro antiproliferative activity of all compounds was obtained against MCF-7, HepG2, and HCT-116 cancer cell lines, as well as against WI38 normal cells using the resazurin assay. Compounds 1–4 showed broad spectrum cytotoxic activity against all these cancer cell lines compared to normal cells. Compound 4g showed potent antiproliferative activity against these cell lines (IC50 = 5.1, 5.02, and 6.6 μM, respectively) comparable to the standard treatment (5-FU and erlotinib). In addition, the most promising group of compounds was further evaluated for their in vivo antitumor efficacy against EAC tumor bearing mice. Notably, compound 4g showed the most potent in vivo antitumor activity. The most active compounds were evaluated for their EGFR inhibitory (range 53–79%) activity. Compound 4g was found to be the most active compound against EGFR (IC50 = 0.25 µM) showing equipotency as the reference treatment (erlotinib). Molecular modeling study was performed on compound 4g revealed a proper binding of this compound inside the EGFR active site comparable to erlotinib. The data suggest that compound 4g could be used as a potential anticancer agent. 相似文献