首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The correlation between the temperature dependence of the kinetic and thermodynamic properties of a series of metallic glass-forming liquids is investigated using the concept of fragility. The results indicate a correlation between the kinetic fragility and thermodynamic fragility in these liquids. The correlation depends critically on the approach used to evaluate the thermodynamic fragility. Two distinct correlation lines are found for the metal–metalloid and for the all-metallic-constituents glass-forming liquids. For the same thermodynamic fragility the metal–metalloid liquids exhibit a distinctively larger kinetic fragility than the pure-metallic liquids. From the evaluation of the Gibbs free-energy difference between the undercooled liquid and the crystalline phase mixture, a correlation between the kinetic fragility and the driving force for nucleation is found, showing that for glass formation in metallic alloys the thermodynamic and kinetic contributions act together.  相似文献   

2.
3.
Li-Ping Wang 《中国物理 B》2021,30(6):68203-068203
Understanding the behaviours of ice nucleation in non-isothermal conditions is of great importance for the preparation and retention of supercooled water. Here ice nucleation in supercooled water under temperature gradients is analyzed thermodynamically based on classical nucleation theory (CNT). Given that the free energy barrier for nucleation is dependent on temperature, different from a uniform temperature usually used in CNT, an assumption of linear temperature distribution in the ice nucleus was made and taken into consideration in analysis. The critical radius of the ice nucleus for nucleation and the corresponding nucleation model in the presence of a temperature gradient were obtained. It is observed that the critical radius is determined not only by the degree of supercooling, the only dependence in CNT, but also by the temperature gradient and even the Young's contact angle. Effects of temperature gradient on the change in free energy, critical radius, nucleation barrier and nucleation rate with different contact angles and degrees of supercooling are illustrated successively. The results show that a temperature gradient will increase the nucleation barrier and decrease the nucleation rate, particularly in the cases of large contact angle and low degree of supercooling. In addition, there is a critical temperature gradient for a given degree of supercooling and contact angle, at the higher of which the nucleation can be suppressed completely.  相似文献   

4.
S. Sastry 《Phase Transitions》2013,86(4-5):507-517
The inherent structure approach, wherein thermodynamic and structural changes in glass-forming liquids are analyzed in terms of local potential energy minima that the liquid samples, has recently been applied extensively to the study of thermodynamic aspects of glass-forming liquids. The evaluation of the configurational entropy, which arises from the multiplicity of local energy minima, plays a central role in such analyses. Results are presented here concerning the calculation of configurational entropy based on computer simulations of a model liquid; and the application of the inherent structure formalism to the study of the glass transition locus, and the fragility of glass-forming liquids.  相似文献   

5.
The phase behavior of proteins is of interest for fundamental and practical reasons. The nucleation of new phases is one of the last major unresolved problems of nature. The formation of protein condensed phases (crystals, polymers, and other solid aggregates, as well as dense liquids and gels) underlies pathological conditions, plays a crucial role in the biological function of the respective protein, or is an essential part of laboratory and industrial processes. In this review, we focus on phase transitions of proteins in their properly folded state. We first summarize the recently acquired understanding of physical processes underlying the phase diagrams of the protein solutions and the thermodynamics of protein phase transitions. Then we review recent findings on the kinetics of nucleation of dense liquid droplets and crystals. We explore the transition from nucleation to spinodal decomposition for liquid-liquid separation and introduce the new concept of solution-to-crystal spinodal. We review the two-step mechanism of protein crystal nucleation, in which mesoscopic metastable protein clusters serve as precursors to the ordered crystal nuclei. The concepts and mechanisms reviewed here provide powerful tools for control of the nucleation process by varying the solution thermodynamic parameters.  相似文献   

6.
预测不同压力下过热液氦的均匀核化速率是十分重要的,它与液氦的极限过热度密切相关。文中通过回顾动力学理论、分子聚集理论、涨落理论等研究液体均匀核化的方法,对过热液氦的均匀核化速率进行了计算,并且对各种方法进行了比较与分析。结果表明,用能量涨落理论来计算过热液氦的均匀核化速率是一种比较合理的方法。  相似文献   

7.
Using single molecule spectroscopy, we show that the fluorescence lifetime trajectories of single probe molecules embedded in a glass-forming polymer melt exhibit strong fluctuations of a hopping character. Using molecular dynamics simulations targeted to explain these experimental observations, we show that the lifetime fluctuations correlate strongly with the average square displacement function of the matrix particles. The latter observable is a direct probe of the meta-basin transitions in the potential energy landscape of glass-forming liquids. We thus show here that single molecule experiments can provide detailed microscopic information on system properties that hitherto have been accessible via computer simulations only.  相似文献   

8.
9.
10.
11.
Xu WS  Sun ZY  An LJ 《J Phys Condens Matter》2012,24(32):325101, 1-325101,11
We numerically study dynamics and correlation length scales of a colloidal liquid in both quiescent and sheared conditions to further understand the origin of slow dynamics and dynamic heterogeneity in glass-forming systems. The simulation is performed in a weakly frustrated two-dimensional liquid, where locally preferred order is allowed to develop with increasing density. The four-point density correlations and bond-orientation correlations, which have been frequently used to capture dynamic and static length scales ξ in a quiescent condition, can be readily extended to a system under steady shear in this case. In the absence of shear, we confirmed the previous findings that the dynamic slowing down accompanies the development of dynamic heterogeneity. The dynamic and static length scales increase with α-relaxation time τ(α) as a power law [Formula: see text], with μ?>?0. In the presence of shear, both viscosity and τ(α) have power-law dependences on shear rate in the marked shear-thinning regime. However, the dependence of correlation lengths cannot be described by power laws in the same regime. Furthermore, the relation [Formula: see text] between length scales and dynamics holds for not too strong shear where thermal fluctuations and external forces are both important in determining the properties of dense liquids. Thus, our results demonstrate a link between slow dynamics and structure in glass-forming liquids even under nonequilibrium conditions.  相似文献   

12.
Both ionic solutions under an external applied static electric field E and glassy-forming liquids under undercooled state are in non-equilibrium state.In this work,molecular dynamics(MD)simulations with three aqueous alkali ion chloride(NaCl,KCl,and RbCl)ionic solutions are performed to exploit whether the glass-forming liquid analogous fractional variant of the Stokes–Einstein relation also exists in ionic solutions under E.Our results indicate that the diffusion constant decouples from the structural relaxation time under E,and a fractional variant of the Stokes–Einstein relation is observed as well as a crossover analogous to the glass-forming liquids under cooling.The fractional variant of the Stokes–Einstein relation is attributed to the E introduced deviations from Gaussian and the nonlinear effect.  相似文献   

13.
Sonocrystallization implies the application of ultrasound radiation to control the nucleation and crystal growth depending on the actuation time and intensity. Its application allows to induce nucleation at lower supersaturations than required under standard conditions. Although extended in inorganic and organic crystallization, it has been scarcely explored in protein crystallization. Now, that industrial protein crystallization is gaining momentum, the interest on new ways to control protein nucleation and crystal growth is advancing. In this work we present the development of a novel ultrasound bioreactor to study its influence on protein crystallization in agarose gel. Gel media minimize convention currents and sedimentation, favoring a more homogeneous and stable conditions to study the effect of an externally generated low energy ultrasonic irradiation on protein crystallization avoiding other undesired effects such as temperature increase, introduction of surfaces which induce nucleation, destructive cavitation phenomena, etc. In-depth statistical analysis of the results has shown that the impact of ultrasound in gel media on crystal size populations are statistically significant and reproducible.  相似文献   

14.
The kinetic potential of nucleation theory is used to describe droplet growth processes in a cloud. Drizzle formation is identified as a statistical barrier-crossing phenomenon that transforms cloud droplets to drizzle size with a rate dependent on turbulent diffusion, droplet collection, and size distribution. Steady-state and transient drizzle rates are calculated for typical cloud conditions. We find drizzle more likely under transient conditions. The model quantifies an important indirect effect of aerosols on climate-drizzle suppression in clouds of higher droplet concentration.  相似文献   

15.
We report a numerical study of the rate of crystal nucleation in a binary suspension of oppositely charged colloids. Two different crystal structures compete in the thermodynamic conditions under study. We find that the crystal phase that nucleates is metastable and, more surprisingly, its nucleation free-energy barrier is not the lowest one. This implies that, during nucleation, there is insufficient time for subcritical nuclei to relax to their lowest free-energy structure. Such behavior is in direct contradiction with the common assumption that the phase that crystallizes most readily is the one with the lowest free-energy barrier for nucleation. The phenomenon that we describe should be relevant for crystallization experiments where competing solid structures are not connected by an easy transformation.  相似文献   

16.
Glycerol is one of the best studied and most widely used glass-forming liquids; however, its dynamic properties are still under discussion. The dielectric spectra of glycerol are studied in detail over wide ranges of temperatures and pressures up to 4.5 GPa. Starting from the pressures of 2–3 GPa, qualitative change in the dynamics of structural relaxation processes in glycerol has been revealed. It is accompanied by the appearance of secondary relaxation and a change in the asymptotic behavior of the pressure dependence of the fragility. The relation between the parameters for different relaxation mechanisms is analyzed.  相似文献   

17.
18.
The kinetics of spontaneous boiling-up of superheated binary solutions of cryogenic liquids is studied. Within the framework of the Kramers-Zeldovich method, an expression is obtained for the steady state rate of homogeneous nucleation in a solution that takes into account free-molecular and diffusion regimes of the substance supply to a growing bubble. Viscous and inertial forces are also taken into account in the study of the nucleus growth dynamics. The work of critical nucleus formation is determined within the framework of the Gibbs and van der Waals capillarity theories. The dependence of the surface tension of critical bubbles in the solution on their size is investigated. The temperature of attainable superheating and nucleation rates in superheated solutions of cryogenic liquids with complete or partial solubility of the components are determined by a method of lifetime measurement. The experiments were conducted in a wide range of pressures and solution concentrations. The measurement results are compared with the theory of homogeneous nucleation taking or not taking into account the size effect in nucleation. It has been found that, by taking into account the size dependence of the surface tension of a nucleus, better agreement between the theory and experiment is obtained. The boundary of essential instability of the solution, that is, the diffusion spinodal, is computed.  相似文献   

19.
Glassy dynamics     
We review dynamic processes in supercooled liquids and glasses as studied by dielectric spectroscopy. It is the only experimental technique which allows one to follow the tremendous slow-down of diffusive motion of particles in disordered condensed matter over more than 18 decades in frequency or time. The dielectric techniques used are treated in detail. As an introduction for non-specialists, the time and temperature evolution of the basic spectral features associated with various dynamic relaxation processes are discussed in detail. Among them are the structural relaxation, the occurrence of fast processes and the boson peak. The relevance of these features for glass formation is discussed. The present article may also serve as a review for recent experimental and theoretical studies on glass-forming liquids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号