首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 378 毫秒
1.
表面增强拉曼光谱技术在多环芳烃检测中的应用   总被引:2,自引:0,他引:2  
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是一类致癌性很强的环境污染物.由于PAHs分子不含有能与金属配位或键合的官能团,因此很难利用SERS技术对其进行直接检测.本文综述了近年来表面增强拉曼散射(surface-enhanced Raman scattering,SERS)...  相似文献   

2.
利用表面增强拉曼 (SERS)技术对光纤表面进行修饰 ,构造了表面增强光纤拉曼光谱传感器。选取了几个有代表性的分子作为检测样品 ,得到了低浓度样品的SERS光谱。结果表明 ,可以将制备SERS活性基底的方法移植到光纤表面来制备SERS活性光纤探针。  相似文献   

3.
基于表面增强拉曼光谱(SERS)高灵敏的分子结构表征优势,本文发展了一种结合便携式拉曼光谱仪,利用SERS实现原烟中广谱杀菌剂多菌灵和甲基硫菌灵的多通道同时快速检测方法.该方法首先对前处理技术进行了优化,将多菌灵与甲基硫菌灵分离于同一处理液的不同溶液层中,再利用便携式拉曼光谱仪进行检测,实现了一次前处理同时区分检测多菌...  相似文献   

4.
基于表面增强拉曼光谱(SERS)技术在非标记蛋白质研究方面的最新进展。SERS是一个特殊的拉曼光谱现象,对于众多被吸附到粗糙金属表面上的拉曼活性分析物,可以提供增强拉曼信号(通常可以增强几个数量级)。SERS是一个灵敏的,选择性的,和通用的技术,并且可以实时、快速的对数据进行采集。因此,在基于仪器仪表技术和数据分析方法以及SERS在生物体系中的诸多优势,SERS经历了快速的发展阶段。重点介绍几个采用SERS技术对生物体系的代表性研究。某些SERS的生物应用发展比较成熟,并已经可以小范围临床应用,而有些还停留在发展的初始阶段(实验室研究阶段)。讨论了最近发展起来的几种基于SERS技术定量分析的方法, 选择不同SERS活性基底和技术(如生物分子在电极上,胶体纳米粒子,周期性图案结构和基于针尖拉曼技术)对蛋白质进行直接研究。此外,根据SERS指纹信息的变化可以用来研究蛋白质-蛋白质,蛋白质-配体间的相互作用。基于SERS技术对生物分子进行定性和/或定量分析方面显示出了相当大的优势。  相似文献   

5.
随着光纤制备工艺以及纳米材料制备技术的发展,光纤探针已成为一种新型的表面增强拉曼散射(SERS)基底,通过在普通单模光纤或多模光纤上制备不同的结构并修饰相应的纳米材料,可以得到多种类型的光纤表面增强拉曼散射探针,并实现较好的检测效果。但受限于光纤本身的结构,普通光纤仅能利用端面或侧表面提供拉曼检测的“热点”区域,限制了其SERS性能的进一步提高。因此制备了大孔柚子型微结构光纤(MSF)表面增强拉曼散射(SERS)探针,其中大孔柚子型MSF SERS探针结构通过一段阶跃多模光纤与柚子型微结构光纤熔接制得。实验分别对自制的纳米银溶胶基底以及大孔柚子型MSF SERS探针的SERS性能进行检测。采用溶胶自组装法制备负载银纳米颗粒的MSF SERS探针,通过控制自组装时间制备不同光纤SERS探针(Ag/MSF-x,其中x为自组装时间,分别为15、 30、 45、 60 min)。采用溶液检测方法,利用Ag/MSF-x探针对10-3 mol·L-1的亚甲基蓝(MB)探针分子进行检测,通过比较相同条件下的增强效果筛选得到Ag/MSF-45探针。为进一步检...  相似文献   

6.
《光散射学报》2015,(3):231-238
表面增强拉曼光谱(SERSp)技术是一种新兴的分析检测技术,由于其对样品分析灵敏度高、检测时间短以及样品所需量小等优点,近年来该技术已在生物医学,化学等领域得到广泛的应用,同时表面增强拉曼散射(SERS)基底的制备已成为该领域的研究热点。本文主要对三种以银纳米粒子(AgNPs)的SERS效应为基质的拉曼活性基底:毛细管-AgNPs,二氧化钛-AgNPs和滤纸-AgNPs进行比较研究。首先分别用三种基底对罗丹明6G(R6G)分子进行拉曼光谱采集及分析,找出三种SERS基底相应的最佳制备条件。最后用这三种最佳条件下制备的SERS基底对同一个健康人血清进行拉曼光谱检测,并对结果进行分析比较。初步结果:三种SERS基底都是可靠的和实用的;二氧化钛-AgNPs基底灵敏度相对较高,但制备过程较复杂;滤纸-AgNPs基底灵敏度其次;毛细管-AgNPs基底及滤纸-AgNPs基底的制备均较为简单。因此,从实用角度考虑,滤纸-AgNPs基底比较适合血清的表面增强拉曼光谱检测与分析。  相似文献   

7.
表面增强拉曼散射(SERS)技术克服了拉曼光谱灵敏度低的缺点,可以获得常规拉曼光谱不易得到的分子结构信息,成为分子甚至单一分子痕量检测的一个重要手段,在生命科学、分析化学等领域得到了广泛的应用。SERS基底是SERS检测中的核心部件,只有少量特殊处理的贵金属才具有较强SERS效应,同时这些传统SERS基底一般都是一次性使用,这给实际使用造成资源的浪费。在简要介绍SERS光谱发展的基础上,重点介绍了近期在可循环SERS基底的制备和应用作一述评,并对可循环SERS基底的研究和发展做了展望。  相似文献   

8.
开发具有高灵敏度、高准确性的新型冠状病毒(SARS-CoV-2)快速检测技术对疫情防控具有重要作用。本文利用表面增强拉曼光谱(SERS)技术对人体唾液中的痕量SARS-CoV-2病毒刺突蛋白(S蛋白)进行了检测。结果表明,含S蛋白的唾液样本与原始唾液样本的拉曼光谱具有显著区别,含S蛋白的唾液样本谱图中可清晰观察到属于S蛋白的拉曼谱线。该结果为后续SERS技术在SARS-CoV-2病毒快速检测方面的应用奠定了坚实基础。  相似文献   

9.
表面增强拉曼散射(SERS)技术可有效增强样品分子的拉曼信号,对生物分子检测具有较高的灵敏性,因此在生化方面有着许多潜在的应用.而将空芯微结构光纤与SERS技术相结合不仅能够远端实时、分布式地检测,同时还可以增加光场与待测物的有效作用面积,减少传统光纤探针无法避免的石英背景信号等问题.本文基于空芯微结构光纤进行SERS探针的制备及性能测试研究,利用真空物理溅射法在空芯光纤内镀纳米Ag膜,从而制备成SERS探针,通过实验检测不同浓度的罗丹明6G (R6G)酒精溶液的拉曼信号.结果表明,在探针的近端正面成功探测到了浓度低至10~(-9)mol/L的R6G拉曼信号,在探针的远端反面探测到的浓度可小于10~(-6)mol/L.该实验结果为研究高灵敏度的SERS探针提供了一种新的手段.  相似文献   

10.
很多致命的疾病都与细菌感染密切相关,快速、准确地检测和鉴定细菌及微生物,一直是微生物学家及有关科研工作者追求的目标,拉曼光谱可以提供丰富的谱图信息,而表面增强拉曼光谱(SERS)有很高的检测灵敏度,然而一些贵金属SERS基底却容易使蛋白质变性,影响检测结果。以大肠杆菌(E.Coli)作为目标检测细菌,首先检测到大肠杆菌的拉曼光谱,之后采用两种不同的SERS基底(ZnO,Ag溶胶)进行检测。结果表明Ag溶胶基底有很强且较丰富的SERS信号,但是相对于E.Coli的本体拉曼谱峰有较大位移,说明与银溶胶相互作用的细菌存在一定的蛋白质变性过程;而ZnO纳米粒子与细菌作用的SERS信号虽然较弱,但是与E.Coli的本体拉曼信号较为相似,说明ZnO纳米粒子对E.Coli本体基本无损,这将有利于SERS在生物体系的无损检测。该结果可以为利用生物相容性好的半导体SERS基底进行细菌的检测提供有益的参考。  相似文献   

11.
细胞的氧化过程与癌症、心血管疾病、神经退行性疾病、糖尿病等多种疾病的发展密切有关。针对氧化反应发生,细胞产生应激反应。这一系列刺激响应过程中会产生一些关键性分子,例如活性氧簇分子(ROS)等。对这些关键分子的分析检测不仅可以有助于理解这些分子在过程中扮演的重要角色,更是对疾病的发生和发展规律有深入的理解。本文重点汇总了分析和检测细胞内氧化应激关键分子所采用的表面增强拉曼光谱(SERS)技术,从SERS方法的设计策略出发,对现有方法归类总结,枚举了多项中国同行的研究工作,并展望了其未来发展方向。  相似文献   

12.
<正> 近年来出现的“表面增强拉曼散射”(SERS),可以使某些吸附分子在金属表面的拉曼散射信号增强10~(5~6)倍。在表面化学研究领域有重大应用前景。但到目前为止,大部分 SERS是在电化学池中,在金属溶胶表面,或在真空镀膜体系中进行的,不适宜做高温条件下“在  相似文献   

13.
文中基于高效、生物兼容性纳米结构银膜,采用便携式拉曼光谱仪分别对10个健康人和10个急性粒白血病患者的氧合血红蛋白进行了表面增强拉曼散射(SERS)光谱的研究。实验发现,健康人与急性粒白血病患者的氧合血红蛋白SERS光谱存在显著差异:(1)健康人氧合血红蛋白SERS光谱中位于340cm-1附近很弱的拉曼峰在急性粒白血病患者的SERS光谱中变的很强;(2)健康人氧合血红蛋白SERS光谱中位于655 cm-1附近的拉曼峰在急性粒白血病患者SERS光谱中蓝移到670 cm-1附近,同时在727cm-1附近出现一个新的拉曼峰;(3)对健康人和急性粒白血病患者氧合血红蛋白SERS光谱中位于472、814、1335、1423和1588 cm-1处的拉曼峰相对强度比研究发现,相对强度比I814/I472,I1335/I472、I1423/I472和I1588/I472可以作为较好的区分健康人和急性粒白血病患者的SERS光谱诊断指标,这为基于SERS光谱技术进行急性粒白血病诊断提供了初步实验依据。  相似文献   

14.
甲基橙在银镜上的表面增强拉曼光谱研究   总被引:2,自引:5,他引:2  
利用表面增强拉曼光谱(SERS)技术研究了甲基橙的(MO)的SERS谱,对拉曼峰进行了指认,并给出了甲基橙在银镜上的吸附状态。  相似文献   

15.
表面增强拉曼散射(SERS)是一种先进的表面分析技术,可以极大提高吸附在金属表面或附近分子的拉曼散射信号。SERS技术由于其快速准确、灵敏度高、选择性好、样品制备要求低等特点,成为当前的研究热点,在化学、食品、生物、医疗等领域展现出重要的应用前景。而利用SERS技术作为一种常规分析和诊断工具面临的一个主要挑战是如何制备均匀、可重复、稳定的活性基底。打印技术操作简单、效率高、成本低,有助于设计等离激元纳米结构。通过优化“热点”增强电磁场,获得重复性好、稳定性高、增强能力强的SERS活性基底。近年来,印刷技术逐渐被应用于SERS基底的制备。主要综述了制备SERS基底的几种常用印刷技术,包括喷墨印刷、凹版印刷、丝网印刷等。分析了衬底表面润湿性、干燥温度、油墨粘度、表面张力、溶剂等因素对SERS性能的影响。总结了印刷技术制备SERS基底的研究进展,并对其潜在应用和未来发展作了展望。  相似文献   

16.
表面增强拉曼光谱(SERS)及其在定量测量中的研究进展   总被引:1,自引:0,他引:1  
莫冰  李和平  陈娟  王攀 《光散射学报》2013,25(3):219-234
表面增强拉曼光谱(surface enhanced Raman spectroscopy,SERS)具有极高的灵敏度,是一种强大的检测低浓度分析物的痕量分析技术,甚至可以实现单分子检测。因此,在化学、生物、环境等领域都是非常重要的分析手段。但是,由于SERS信号的重现性不高,尚未成为常规的定量分析技术。本文阐述了SERS的基本原理,总结了应用SERS实现定量检测的研究成果,评述了SERS的定量检测在环境、生物医药、食品卫生等方面的应用,并提出了展望和亟待解决的问题。  相似文献   

17.
在沉积金纳米颗粒的干燥滤纸上进行对硝基苯胺的表面增强拉曼散射(SERS)光谱研究,并与对硝基苯胺在金胶水溶液中的表面增强拉曼散射(SERS)光谱相比,分子拉曼光谱发生了很大变化。同时利用DFT理论计算对硝基苯胺在金胶颗粒上的吸附行为的拉曼光谱。DFT理论模拟计算和FI-Raman实验分析都表明这种变化源于对硝基苯胺的不同吸附方式。SERS和DFT结合研究分子的吸附是一种有效的技术。  相似文献   

18.
表面增强拉曼散射(SERS)衬底的研究及应用   总被引:4,自引:0,他引:4  
表面增强拉曼散射(surface enhanced Raman scattering,SERS)是通过吸附在粗糙金属表面或金属纳米结构上的分子与金属表面发生的等离子共振(SPR)相互作用而引起的拉曼散射增强现象,是一种高灵敏的探测界面特性和分子间相互作用的光谱手段。文章归纳总结了近年来常用的SERS衬底的制备方法(溶液中的金属溶胶(MNPs in suspension)、 金属纳米粒子的自组装(self-assembly)、 模板法(Template method)和纳米光刻法(Nanolithographic)等;综述了这些衬底的表面增强拉曼特性;着重介绍了SERS增强在环境监测和生物医学应用上的最新国内外研究动态。目前已经能够实现增强因子高、 可靠性好、 重现性强的SERS衬底的可控制备,表明SERS可以作为一种高性能的分析探测工具,充分实现其潜在应用价值。  相似文献   

19.
本文利用SERS技术对疑似吸毒人员尿液中的毒品进行快速检测。通过对尿液中的毒品进行快速分离和提纯,结合便携式拉曼光谱仪,并利用自组装的金纳米颗粒作为SERS基底对其进行检测分析,可以实现现场检测。该方法灵敏性高、检测速度快,有望应用于公安及司法部门的缉毒、查毒工作现场中。  相似文献   

20.
SERS标记免疫检测研究进展   总被引:2,自引:0,他引:2  
表面增强拉曼光谱(SERS)用于标记免疫检测是标记免疫学与SERS相结合的一门新型的研究技术。20世纪70年代,SERS现象的发现与证实给拉曼光谱技术的研究注入了新的活力。SERS因具有高灵敏度、较高选择性以及适合水溶液物质结构研究等特点,近年来已在生物医学研究领域中显示出独特的潜在应用前景。在标记免疫领域,SERS标记免疫研究更是得到了迅速的发展,成为了国内外的研究热点。文章从SERS标记免疫检测灵敏度的提高、非特异性吸附的降低、多组分检测等三方面叙述了SERS标记免疫检测的原理、特点、存在问题及最新发展。归纳了目前提高SERS标记免疫检测灵敏度的研究技术,阐述了研究中非特异性吸附带来的负面影响,简介了实验室的多组分研究工作。同时,对SERS标记免疫技术未来的研究方向与发展前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号