首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
In this study, we investigate theoretically the effect of spin–orbit coupling on the energy level spectrum and spin texturing of a quantum wire with a parabolic confining potential subjected to the perpendicular magnetic field. Highly accurate numerical calculations have been carried out using a finite element method. Our results reveal that the interplay between the spin–orbit interaction and the effective magnetic field significantly modifies the band structure, producing additional subband extrema and energy gaps. Competing effects between external field and spin–orbit interactions introduce complex features in spin texturing owing to the couplings in energy subbands. We obtain that spatial modulation of the spin density along the wire width can be considerably modified by the spin–orbit coupling strength, magnetic field and charge carrier concentration.  相似文献   

2.
B Gisi  S Sakiroglu  &#  Sokmen 《中国物理 B》2016,25(1):17103-017103
In this work, we investigate the effects of interplay of spin–orbit interaction and in-plane magnetic fields on the electronic structure and spin texturing of parabolically confined quantum wire. Numerical results reveal that the competing effects between Rashba and Dresselhaus spin–orbit interactions and the external magnetic field lead to a complicated energy spectrum. We find that the spin texturing owing to the coupling between subbands can be modified by the strength of spin–orbit couplings as well as the magnitude and the orientation angle of the external magnetic field.  相似文献   

3.
Spin remagnetization modes in paramagnetic materials with Rashba and Dresselhaus spin–orbit interaction are studied by analytically solving the kinetic equations for the spin-density matrix. These eigenmodes, which are induced by an in-plane electric field, lead to a rotation of the spin magnetic moment. The specific character of the spin remagnetization modes depends on the details of the excitation mechanism. By applying the approach to another system, namely to a model for graphene, pseudospin excitations are identified.  相似文献   

4.
This is a review of electronic quantum interference in mesoscopic ring structures based on graphene, with a focus on the interplay between the Aharonov–Bohm effect and the peculiar electronic and transport properties of this material. We first present an overview on recent developments of this topic, both from the experimental as well as the theoretical side. We then review our recent work on signatures of two prominent graphene-specific features in the Aharonov–Bohm conductance oscillations, namely Klein tunneling and specular Andreev reflection. We close with an assessment of experimental and theoretical development in the field and highlight open questions as well as potential directions of the developments in future work.  相似文献   

5.
We investigate the adiabatic quantum pump phenomena in a semiconductor with Rashba and Dresselhaus spin–orbit couplings (SOCs). Although it is driven by applying spin-independent potentials, the system can pump out spin-dependent currents, i.e., generate nonzero charge and spin currents at the same time. The SOC can modulate both the magnitude and the direction of currents, exhibiting an oscillating behavior. Moreover, it is shown that the spin current has different sensitivities to two types of the SOC. These results provide an alternative method to adjust pumped current and might be helpful for designing spin pumping devices.  相似文献   

6.
We propose in theory a curved nanowire structure that can both serve as a spin inverter and a spin polarizer driven by a periodic Rashba spin–orbit coupling (SOC) and a uniform Dresselhaus SOC. The curved section of the U-shaped quasi-one dimensional nanowire with an arc of radius R and circumferential length πR is divided into segments of equal length initially having only its inherent homogeneous Dresselhaus SOC. Then a Rashba-type SOC is applied at every alternating segment. By tuning the Rashba SOC strength and the incident electron energy, this device can flip the spin at the output of an incoming spin-polarized electron. On the other hand, this same device acts as a spin filter for an unpolarized input for which an outgoing electron with a non-zero polarization can be achieved without the application of an external magnetic field. Moreover, the potential modulation caused by the periodic Rashba SOC enables this device to function as an attenuator for a certain range of incident electron energies that can make the probability current density drop to 10−4 of its otherwise magnitude in other regimes.  相似文献   

7.
We study the spin-dependent electron transport through a serial double-quantum-dot (DQD) by using Green’s function equation of motion technique. Special attention is paid to the functions of the Rashba spin–orbit (RSO) effect in one of the DQD and the inter-dot tunneling coupling tctc. When the electrons transport from the left or the right lead into the middle lead, a quasi-two channel is established due to the existence of tctc. Then, the RSO interaction will induce into the tunnel matrix element a spin-dependent extra phase factor σ?Rσ?R as the electrons flowing through different conduction channels, and thus making the current in the middle lead to be spin-polarized. Moreover, by properly adjusting the value of tctc, the dot-lead coupling strength, dots’ levels and the external bias voltages, a net spin current without the accompanying of charge current can be generated. The structure proposed here is simple and can be realized in the present experiments.  相似文献   

8.
In this paper one deals with the derivation of approximations as well as of exact results concerning the energy of a planar electron subjected to both Rashba and Dresselhaus spin–orbit interactions under the influence of a transversal magnetic field and of an additional in-plane electric field. One begins by applying quickly tractable large nn-approximations, where nn stands for the oscillator quantum number. Reordering leading terms, we found that the energies characterizing combined spin–orbit interactions proceed specifically in terms of concrete selections of the couplings between spin-up and spin-down states. In addition, interpolations between the exact energies of Rashba and Dresselhaus systems can also be proposed. The derivation of exact bound-state energies in magnetic fields proceeds in turn by selecting spin-up and spin-down states in a suitable manner. This amounts to solving cubic equations presented before, but now the interpretations are rather different. Switching on the electric field leads to reasonably accurate energies proceeding in terms of a ten order polynomial equation. Both energy approximations and exact results serve a deeper understanding, as well as for related comparisons.  相似文献   

9.
10.
We consider a new effect induced by spin–orbit coupling in a two-dimensional electron gas confined in a semiconductor quantum well, i.e. the possibility of spin current generation by fluctuating random Rashba spin–orbit interaction, with the corresponding mean value of the interaction being equal to zero. Our main results suggest that – in contrast to the spatially uniform Rashba spin–orbit interaction – the spin Hall effect does not vanish for typical disorder strengths. We also point out some other possibilities of using such a random Rashba coupling for the generation of spin density and spin current in two-dimensional nonmagnetic structures.  相似文献   

11.
Influence of electrons interaction with longitudinal acoustic phonons on magnetoelectric and spin-related transport effects are investigated. The considered system is a two-dimensional electron gas system with both Rashba and Dresselhaus spin–orbit couplings. The works which have previously been performed in this field, have revealed that the Rashba and Dresselhaus couplings cannot be responsible for spin current in the non-equilibrium regime. In the current Letter, a semiclassical method was employed using the Boltzmann approach and it was shown that the spin current of the system, in general, does not go all the way to zero when the electron–phonon coupling is taken into account. It was also shown that spin accumulation of the system could be influenced by electron–phonon coupling.  相似文献   

12.
13.
The influence of Rashba and Dresselhaus spin–orbit interactions on the electronic properties of quasi one-dimensional systems like InAs quantum wires is discussed in the presence of in-plane magnetic fields. One shows that equal coupling strength conditions are provided specifically by the commutativity of two-dimensional constituents of velocity and current operators. The interesting point is that equal strength spin–orbit couplings one deals with proceed in conjunction with related spin conservations, which amounts to account for selected orientations of the magnetic field. Accordingly, the in-plane magnetic fields should be directed solely along the bisectrices. Other angles may be conceivable, but in this case spin conservations alluded to above are lost. Such results open the way to a consistent derivation of the equal coupling strength limit of the energy, which leads in turn to the derivation of novel spin-precession effects. A related effective gyromagnetic factor has also been established.  相似文献   

14.
Monodisperse and spherical α-alumina nanoparticles with a narrow size distribution in range of 11–18 nm have been prepared via the simple chemical precipitation and a new heat-treatment method, namely isolation-medium-assisted calcination. As-prepared α-alumina nanoparticles were characterized by means of X-ray diffraction analyses (XRD), thermogravimetry and differential thermal analyzer (TG–DTA), Fourier transform infrared spectroscopy, and field emission transmission electron microscope (TEM). XRD results confirm that the α-alumina in corundum structure is obtained by heating at 1,000 °C for 3 h. And TEM observations reveal the additional isolation medium surrounded α-alumina precursor forms the lamella, which effectively reduces direct contacts between precursor particles and prevents the agglomerating of the aluminum hydroxides during drying process and then the sintering and growth of the alumina nanoparticles are avoided during calcination. The highly uniform and monodisperse α-alumina nanoparticles are obtained.  相似文献   

15.
The Aharonov–Bohm effect is considered as a scattering event with nonrelativistic charged particles of the wavelength which is less than the transverse size of an impenetrable magnetic vortex. The quasiclassical WKB method is shown to be efficient in solving this scattering problem. We find that the scattering cross section consists of two terms, one describing the classical phenomenon of elastic reflection and another one describing the quantum phenomenon of diffraction; the Aharonov–Bohm effect is manifested as a fringe shift in the diffraction pattern. Both the classical and the quantum phenomena are independent of the choice of a boundary condition at the vortex edge, providing that probability is conserved. We show that a propagation of charged particles can be controlled by altering the flux of a magnetic vortex placed on their way.  相似文献   

16.
Chaotic systems demonstrate complex behaviour in their state variables and their parameters, which generate some challenges and consequences. This paper presents a new synchronisation scheme based on integral sliding mode control (ISMC) method on a class of complex chaotic systems with complex unknown parameters. Synchronisation between corresponding states of a class of complex chaotic systems and also convergence of the errors of the system parameters to zero point are studied. The designed feedback control vector and complex unknown parameter vector are analytically achieved based on the Lyapunov stability theory. Moreover, the effectiveness of the proposed methodology is verified by synchronisation of the Chen complex system and the Lorenz complex systems as the leader and the follower chaotic systems, respectively. In conclusion, some numerical simulations related to the synchronisation methodology is given to illustrate the effectiveness of the theoretical discussions.  相似文献   

17.
In the present paper, we have theoretically investigated thermoelectric transport properties of armchair and zigzag graphene nanoribbons with Rashba spin–orbit interaction, as well as dephasing scattering processes by applying the nonequilibrium Green function method. Behaviors of electronic and thermal currents, as well as thermoelectric coefficients are studied. It is found that both electronic and thermal currents decrease, and thermoelectric properties been suppressed, with increasing strength of Rashba spin–orbit interaction. We have also studied spin split and spin density induced by Rashba spin–orbit interaction in the graphene nanoribbons.  相似文献   

18.
Spin transport properties in a non-uniform quantum wire (QW) in the presence of both the Rashba and Dresselhaus spin–orbit couplings (SOCs) is investigated by using the non-equilibrium Green's function (NEGF) method combined with the Landauer Büttiker formalism. It is found that such a non-uniform quantum wire exhibits considerable spin polarization in its conductance in the influence of both the Rashba and Dresselhaus SOCs, and that the two SOCs' strengths strongly affect both the magnitude and sign of the electron spin polarization. Interestingly, the Rashba and Dresselhaus SOCs play the same modulating role in the electron spin polarization. The proposed nanostructure can potentially be utilized to devise an all-electrical spintronic device.  相似文献   

19.
We theoretically investigate spin transport in the elliptical ring and the circular ring with Rashba spin–orbit interaction.It is shown that when Rashba spin–orbit interaction is relatively weak, a single circular ring can not realize spin flip, however an elliptical ring may work as a spin-inverter at this time, and the influence of the defect of the geometry is not obvious.Howerver if a giant Rashba spin–orbit interaction strength has been obtained, a circular ring can work as a spin-inverter with a high stability.  相似文献   

20.
We study electron energies in a double concentric quantum ring with anisotropy in the rims heights in the presence of the external magnetic field applied along the symmetry axis. To this end, we consider a model in which the thickness grows linearly from the axis up to the inner rim with a slope different from one between the inner and the outer rims. The anisotropy in the rims heights originated by the presence in the structure of various valleys we simulate by periodic dependence of the slope on the radial direction. We show that the wave functions of the electron confined in such structure can be found analytically if the slopes in all radial directions are the same, and by using a simple exact diagonalization procedure otherwise. The behavior of the electron energies as functions of the magnetic field, rings radii and rims heights, as well as the number of the valleys and their depths is consistently described with our formalism. The entanglement of the states with different radial and orbital quantum numbers, the period and the amplitude of the Aharonov–Bohm oscillations are very sensible to any variations of the rims heights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号