共查询到20条相似文献,搜索用时 0 毫秒
1.
Theoretical predictions are presented for wave propagation in nonlinear curved single-walled carbon nanotubes (SWCNTs). Based on the nonlocal theory of elasticity, the computational model is established, combined with the effects of geometrical nonlinearity and imperfection. In order to use the wave analysis method on this topic, a linearization method is employed. Thus, the analytical expresses of the shear frequency and flexural frequency are obtained. The effects of the geometrical nonlinearity, the initial geometrical imperfection, temperature change and magnetic field on the flexural and shear wave frequencies are investigated. Numerical results indicate that the contribution of the higher-order small scale effect on the shear deformation and the rotary inertia can lead to a reduction in the frequencies compared with results reported in the published literature. The theoretical model derived in this study should be useful for characterizing the mechanical properties of carbon nanotubes and applications of nano-devices. 相似文献
2.
In this paper, the transverse wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes is investigated based on nonlocal elasticity theory with consideration of surface effect. The governing equation is formulated utilizing nonlocal Euler-Bernoulli beam theory and Kelvin-Voigt model. Explicit wave dispersion relation is developed and wave phase velocities and frequencies are obtained. The effect of the fluid flow velocity, structural damping, surface effect, small scale effects and tube diameter on the wave propagation properties are discussed with different wave numbers. The wave frequency increases with the increase of fluid flow velocity, but decreases with the increases of tube diameter and wave number. The effect of surface elasticity and residual surface tension is more significant for small wave number and tube diameter. For larger values of wave number and nonlocal parameters, the real part of frequency ratio raises. 相似文献
3.
In this paper, the viscoelastic wave propagation in an embedded viscoelastic single-walled carbon nanotube (SWCNT) is studied based on the nonlocal strain gradient theory. The characteristic equation for the viscoelastic wave in SWCNTs is derived. The emphasis is placed on the influence of the tube diameter on the viscoelastic wave dispersion. A blocking diameter is observed, above which the wave could not propagate in SWCNTs. The results show that the blocking diameter is greatly dependent on the damping coefficient, the nonlocal and the strain gradient length scale parameters, as well as the Winkler modulus of the surrounding elastic medium. These findings may provide a prospective application of SWCNTs in nanodevices and nanocomposites. 相似文献
4.
Based on the nonlocal strain gradient theory and Timoshenko beam model, the properties of wave propagation in a viscoelastic single-walled carbon nanotube (SWCNT) are investigated. The characteristic equations for flexural and shear waves in visco-SWCNTs are established. The influence of the tube size on the wave dispersion is clarified. For a low damping coefficient, threshold diameter for shear wave (SW) is observed, below which the phase velocity of SW is equal to zero, whilst flexural wave (FW) always exists. For a high damping coefficient, SW is absolutely constrained, and blocking diameter for FW is observed, above which the wave propagation is blocked. The effects of the wave number, nonlocal and strain gradient length scale parameters on the threshold and blocking diameters are discussed in detail. 相似文献
5.
Wave propagation in single-walled carbon nanotubes (SWCNTs) conveying fluids and placed in multi-physical fields (including magnetic and temperature fields) is studied in this paper. The nanotubes are modelled as Timoshenko beams. Based on the nonlocal beam theory, the governing equations of motion are derived using Hamilton's principle, and then solved by Galerkin approach, leading to two second-order ordinary differential equations (ODEs). Numerical simulations are carried out to verify the analytical model proposed in the present study, and determine the influences of the nonlocal parameter, the fluid velocity and flow density, the temperature and magnetic field flux change, and the surrounding elastic medium on the wave behaviour of SWCNTs. The results show that the nonlocal parameter has a considerable influence on dynamic behaviour of the nanotube and the fluid flow inside it. The results also show that the magnetic and temperature fields play an important role on the wave propagation characteristics of SWCNTs. 相似文献
6.
In the present paper, the coupling effect of transverse magnetic field and elastic medium on the longitudinal wave propagation along a carbon nanotube (CNT) is studied. Based on the nonlocal elasticity theory and Hamilton's principle, a unified nonlocal rod theory which takes into account the effects of small size scale, lateral inertia and radial deformation is proposed. The existing rod theories including the classic rod theory, the Rayleigh-Love theory and Rayleigh-Bishop theory for macro solids can be treated as the special cases of the present model. A two-parameter foundation model (Pasternak-type model) is used to represent the elastic medium. The influence of transverse magnetic field, Pasternak-type elastic medium and small size scale on the longitudinal wave propagation behavior of the CNT is investigated in detail. It is shown that the influences of lateral inertia and radial deformation cannot be neglected in analyzing the longitudinal wave propagation characteristics of the CNT. The results also show that the elastic medium and the transverse magnetic field will also affect the longitudinal wave dispersion behavior of the CNT significantly. The results obtained in this paper are helpful for understanding the mechanical behaviors of nanostructures embedded in an elastic medium. 相似文献
7.
Structures under parametric load can be induced to the parametric instability in which the excitation frequency is located the instability region. In the present work, the parametric instability of double-walled carbon nanotubes is studied. The axial harmonic excitation is considered and the nonlocal continuum theory is applied. The critical equation is derived as the Mathieu form by the Galerkin's theory and the instability condition is presented with the Bolotin's method. Numerical calculations are performed and it can be seen that the van der Waals interaction can enhance the stability of double-walled nanotubes under the parametric excitation. The parametric instability becomes more obvious with the matrix stiffness decreasing and small scale coefficient increasing. The parametric instability is going to be more significant for higher mode numbers. For the nanosystem with the soft matrix and higher mode number, the small scale coefficient and the ratio of the length to the diameter have obvious influences on the starting point of the instability region. 相似文献
8.
Flexural and axial wave propagation in double walled carbon nanotubes embedded in an elastic medium and axial wave propagation in single walled carbon nanotubes are investigated. A length scale dependent theory which is called doublet mechanics is used in the analysis. Governing equations are obtained by using Hamilton principle. Doublet mechanics results are compared with classical elasticity and other size dependent continuum theories such as strain gradient theory, nonlocal theory and lattice dynamics. In addition, experimental wave frequencies of graphite are compared with the doublet mechanics theory. It is obtained that doublet mechanics gives accurate results for flexural and axial wave propagation in nanotubes. Thus, doublet mechanics can be used for the design of electro-mechanical nano-devices such as nanomotors, nanosensors and oscillators. 相似文献
9.
This paper makes the first attempt to investigate the dispersion behavior of waves in magneto-electro-elastic (MEE) nanobeams. The Euler nanobeam model and Timoshenko nanobeam model are developed in the formulation based on the nonlocal theory. By using the Hamilton’s principle, we derive the governing equations which are then solved analytically to obtain the dispersion relations of MEE nanobeams. Results are presented to highlight the influences of the thermo-electro-magnetic loadings and nonlocal parameter on the wave propagation characteristics of MEE nanobeams. It is found that the thermo-electro-magnetic loadings can lead to the occurrence of the cut-off wave number below which the wave can’t propagate in MEE nanobeams. 相似文献
10.
Based on the strain gradient and Eringen’s piezoelasticity theories, wave propagation of an embedded double-walled boron nitride nanotube (DWBNNT) conveying fluid is investigated using Euler–Bernoulli beam model. The elastic medium is simulated by the Pasternak foundation. The van der Waals (vdW) forces between the inner and outer nanotubes are taken into account. Since, considering electro-mechanical coupling made the nonlinear motion equations, a numerical procedure is proposed to evaluate the upstream and downstream phase velocities. The results indicate that the effect of nonlinear terms in motion equations on the phase velocity cannot be neglected at lower wave numbers. Furthermore, the effect of fluid-conveying on wave propagation of the DWBNNT is significant at lower wave numbers. 相似文献
11.
Dispersion relation of single-walled carbon nanotubes (SWCNTs) is investigated. The governing equations of motion of SWCNTs are derived on the basis of the gradient shell model, which involves one strain gradient and one higher order inertia parameters in addition to two Lamé constants. The present shell model can predict wave dispersion in good agreement with those of molecular dynamic (MD) simulations available in the literature. The effects of two small scale parameters on the angular frequency and phase velocity in the longitudinal, torsional and radial directions are studied in detail. The numerical results show that the angular frequency and phase velocity increase with the increase of strain gradient parameter, whereas decrease with inertia gradient parameter increases. In addition, analytical expressions of the cut-off frequencies and asymptotic phase velocities are given. It is found that the number of cut-off frequencies is dependent on the circumferential wave number, and two asymptotic phase velocities exist for nonzero value of strain gradient parameter, while only one exists when the strain gradient parameter is excluded. 相似文献
12.
13.
This paper investigates the free vibration of protein microtubules (MTs) embedded in the cytoplasm by using linear and nonlinear Euler–Bernoulli beam model based on modified strain gradient theory. The protein microtubule is modeled as a simply support or clamped–clamped beam. Beside, the elastic medium surrounding of MTs is modeled with Pasternak foundation. Vibration equations are obtained by using Hamilton principle and these equations are solved according to boundary conditions. Finally the dependency of vibration frequencies on environmental conditions, MTs size, changes of temperature and material length scale parameters (size effects) is studied. By comparing the findings, it could be said that the MTs' frequency is greatly increased in the presence of cytoplasm and it is very dependent to material length scale parameters. 相似文献
14.
This article is a numerical study of stagnation point flow of carbon nanotubes over an elongating sheet in presence of induced magnetic field submerged in bioconvection nanoparticles. Two types of carbon nanotubes are considered i.e. single wall carbon nanotube and multi wall carbon nanotube mixed in based fluid taken to be water as well as kerosene-oil. The emphasis of present study is to examine effect of induced magnetic field on boundary layer flows along with influence of SWCNT and MWCNT. Physical problem is mathematically modeled and simplified by using appropriate similarity transformations. Shooting method with Runge-Kutta of order 5 is employed to compute numerical results for non-dimensional velocity, induced magnetic field and temperature. The effects of pertinent parameters are portrayed through graphs. Numerical values of skinfriction coefficient and Nusselt number are tabulated to study the behaviors at the stretching surface. It is depicted that induced magnetic field is an increasing function of solid nanoparticles volumetric fraction. Moreover, MWCNT contributes in rising induced magnetic field more as compared to SWCNT for both water and kerosene-oil based fluids. 相似文献
15.
16.
This paper reports the result of investigation into the morphological evolution and migration of void in bi-piezoelectric material interface by utilizing nonlocal phase field model and finite element method (FEM), where the small scale effect containing the long-range forces among atoms is considered. The nonlocal elastic strain energy and the nonlocal electric energy around the void are firstly calculated by the finite element method. Then based on the finite difference method (FDM), the thermodynamic equilibrium equation containing the surface energy and anisotropic diffusivity is solved to simulate the morphological evolution and migration of elliptical void in bi-piezoelectric films interface. Results show that the way of load condition plays a significant role in the evolution process, and the boundary of void's long axis gradually collapses toward the center of ellipse. In addition, the evolutionary speed of left boundary gradually decreases with scale effect coefficient growth. This work can provide references for the safety evaluation of piezoelectric materials in micro electro mechanical system. 相似文献
17.
The effects of static magnetic field on microwave absorption of hydrogen plasma in carbon nanotubes: A numerical study 下载免费PDF全文
We theoretically investigate the microwave absorption properties of hydrogen plasma in iron-catalyzed highpressure disproportionation-grown carbon nanotubes under an external static magnetic field in the frequency range 0.3 GHz to 30 GHz, using the Maxwell equations in conjunction with a general expression for the effective complex permittivity of magnetized plasma known as the Appleton–Hartree formula. The effects of the external static magnetic field intensity and the incident microwave propagation direction on the microwave absorption of hydrogen plasma in CNTs are studied in detail. The numerical results indicate that the microwave absorption properties of hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes can be obviously improved when the external static magnetic field is applied to the material. It is found that the specified frequency microwave can be strongly absorbed by the hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes over a wide range of incidence angles by adjusting the external magnetic field intensity and the parameters of the hydrogen plasma. 相似文献
18.
Upon excitation of carbon disulphide (CS2) molecules under UV light irradiation at 313?nm a gaseous mixture of CS2 and glyoxal deposited sedimentary aerosol particles only. The nucleation process of the aerosol particles was investigated by measuring the He–Ne laser light intensity scattered by the aerosol particles formed under light irradiation at 313?nm, and the chemical structure of the sedimentary particles was analysed by measuring the FT-IR and X-ray photoelectron spectra. On application of a magnetic field of up to 5?T, the nucleation process was decelerated and the chemical species originating from CS2 were less abundant. The results were compared with those obtained under visible light irradiation at 435.8?nm reported previously. Chemical reactions between CS2 and glyoxal molecules, which were responsive to the magnetic field, are discussed briefly. 相似文献
19.
The E33 and E44 optical spectra of semiconducting single-walled carbon nanotubes under axial magnetic field (B) are studied using the tight-binding model, which also takes into account the exciton effect. It is found that the E33 and E44 splitting, induced by the axial magnetic field, is line increased with magnetic field, which can be described by the splitting rate. Also by investigation of the dependence of splitting rate, we found that it shows a clear (2n+m) family behavior besides the diameter dependence, which can be used as a supplemental tool to identify the tubes used in the experiment, and is expected to be detected by the future experiment. 相似文献
20.
In this work, the magnetic properties of the single layer Ising nanogaphene (SLING) are investigated by using Kaneyoshi approach (KA) within the effective field theory for different spin orientations of its magnetic atoms. We find that the magnetizations of the SLING has no phase transition, certain Curie temperature and distinct peak of susceptibility at Tc for the some spin orientations at the zero external magnetic field (H=0.0). Because these behaviors occur at H≠0.0, we suggest that the SLING generates an external magnetic field and behaves as an external magnetic field generator for these spin orientations. However, the SLING exhibits ferromagnetic behaviors for only one spin orientations. But, it exhibits antiferromagnetic behaviors for the others. For the AFM cases, diamagnetic susceptibility behaviors and type II superconductivity hysteresis behaviors are obtained. We hope that these results can open a door to obtain new class of single layer graphene and graphene-based magnetic field generator devices with the spin orientation effect. 相似文献