共查询到20条相似文献,搜索用时 15 毫秒
1.
Xiao Hu Samuel Ricci Sebastian Naranjo Zachary Hill Peter Gawason 《Molecules (Basel, Switzerland)》2021,26(15)
Electrically responsive biomaterials are an important and emerging technology in the fields of biomedical and material sciences. A great deal of research explores the integral role of electrical conduction in normal and diseased cell biology, and material scientists are focusing an even greater amount of attention on natural and hybrid materials as sources of biomaterials which can mimic the properties of cells. This review establishes a summary of those efforts for the latter group, detailing the current materials, theories, methods, and applications of electrically conductive biomaterials fabricated from protein polymers and polysaccharides. These materials can be used to improve human life through novel drug delivery, tissue regeneration, and biosensing technologies. The immediate goal of this review is to establish fabrication methods for protein and polysaccharide-based materials that are biocompatible and feature modular electrical properties. Ideally, these materials will be inexpensive to make with salable production strategies, in addition to being both renewable and biocompatible. 相似文献
2.
短肽自组装水凝胶作为一种新型的生物材料,具有生物相容性高、免疫原性低、含水量高、降解产物可被机体重吸收利用、结构与天然细胞外基质类似等优点,使其在材料科学、生物医药及临床医学等领域具有广阔的应用前景。在这篇综述中,我们主要介绍了常用的几种制备稳定的肽自组装水凝胶方法,包括酶催化的水凝胶化、化学/物理交联的水凝胶化以及光催化的水凝胶化。进一步,我们介绍一些关于肽自组装水凝胶在药物递送和抗肿瘤治疗、抗菌和伤口愈合以及3D生物打印和组织工程中的应用。我们希望通过本文的论述能引起更多的人对肽自组装水凝胶的关注,以推进其在生物医学领域应用的发展。 相似文献
3.
Rahimeh Rasouli Ahmed Barhoum Mikhael Bechelany Alain Dufresne 《Macromolecular bioscience》2019,19(2)
Unique features of nanofibers provide enormous potential in the field of biomedical and healthcare applications. Many studies have proven the extreme potential of nanofibers in front of current challenges in the medical and healthcare field. This review highlights the nanofiber technologies, unique properties, fabrication techniques (i.e., physical, chemical, and biological methods), and emerging applications in biomedical and healthcare fields. It summarizes the recent researches on nanofibers for drug delivery systems and controlled drug release, tissue‐engineered scaffolds, dressings for wound healing, biosensors, biomedical devices, medical implants, skin care, as well as air, water, and blood purification systems. Attention is given to different types of fibers (e.g., mesoporous, hollow, core‐shell nanofibers) fabricated from various materials and their potential biomedical applications. 相似文献
4.
多肽聚合物是以多肽为主链的合成聚合物,由于其固有的生物相容性和生物降解性,在生物医学领域展现出广阔的应用前景,然而多肽聚合物的高效、快速、简便合成仍然具有很大挑战。近年来随着合成化学的快速发展,基于α-氨基酸的N-羧基环内酸酐(NCA)开环聚合法制备多肽聚合物取得了突破性进展,合成了大量基于多肽聚合物的新型材料。本文首先介绍了NCA单体的合成机理及最新改进,然后重点介绍了近年来新发展的NCA开环聚合快速、高效制备多肽聚合物的不同引发或催化体系,最后简要介绍了多肽聚合物在抗菌剂、药物递送及组织工程等领域的应用,并提出了多肽聚合物材料在生物医学领域应用所面临的挑战。 相似文献
5.
Conductive hydrogel, with electroconductive properties and high water content in a three-dimensional structure is prepared by incorporating conductive polymers, conductive nanoparticles, or other conductive elements, into hydrogel systems through various strategies. Conductive hydrogel has recently attracted extensive attention in the biomedical field. Using different conductivity strategies, conductive hydrogel can have adjustable physical and biochemical properties that suit different biomedical needs. The conductive hydrogel can serve as a scaffold with high swelling and stimulus responsiveness to support cell growth in vitro and to facilitate wound healing, drug delivery and tissue regeneration in vivo. Conductive hydrogel can also be used to detect biomolecules in the form of biosensors. In this review, we summarize the current design strategies of conductive hydrogel developed for applications in the biomedical field as well as the perspective approach for integration with biofabrication technologies. 相似文献
6.
Moon Sung Kang Tae Eon Park Hyo Jung Jo Min Seok Kang Su Bin Lee Suck Won Hong Ki Su Kim Dong-Wook Han 《Macromolecular bioscience》2023,23(10):2300148
Macromolecules are large, complex molecules composed of smaller subunits known as monomers. The four primary categories of macromolecules found in living organisms are carbohydrates, lipids, proteins, and nucleic acids; they also encompass a broad range of natural and synthetic polymers. Recent studies have shown that biologically active macromolecules can help regenerate hair, providing a potential solution for current hair regeneration therapies. This review examines the latest developments in the use of macromolecules for the treatment of hair loss. The fundamental principles of hair follicle (HF) morphogenesis, hair shaft (HS) development, hair cycle regulation, and alopecia have been introduced. Microneedle (MN) and nanoparticle (NP) delivery systems are innovative treatments for hair loss. Additionally, the application of macromolecule-based tissue-engineered scaffolds for the in vitro and in vivo neogenesis of HFs is discussed. Furthermore, a new research direction is explored wherein artificial skin platforms are adopted as a promising screening method for hair loss treatment drugs. Through these multifaceted approaches, promising aspects of macromolecules for future hair loss treatments are identified. 相似文献
7.
Seung Hyuk Im Dam Hyeok Im Su Jeong Park Justin Jihong Chung Youngmee Jung Soo Hyun Kim 《Molecules (Basel, Switzerland)》2021,26(10)
Polylactide (PLA) is among the most common biodegradable polymers, with applications in various fields, such as renewable and biomedical industries. PLA features poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) enantiomers, which form stereocomplex crystals through racemic blending. PLA emerged as a promising material owing to its sustainable, eco-friendly, and fully biodegradable properties. Nevertheless, PLA still has a low applicability for drug delivery as a carrier and scaffold. Stereocomplex PLA (sc-PLA) exhibits substantially improved mechanical and physical strength compared to the homopolymer, overcoming these limitations. Recently, numerous studies have reported the use of sc-PLA as a drug carrier through encapsulation of various drugs, proteins, and secondary molecules by various processes including micelle formation, self-assembly, emulsion, and inkjet printing. However, concerns such as low loading capacity, weak stability of hydrophilic contents, and non-sustainable release behavior remain. This review focuses on various strategies to overcome the current challenges of sc-PLA in drug delivery systems and biomedical applications in three critical fields, namely anti-cancer therapy, tissue engineering, and anti-microbial activity. Furthermore, the excellent potential of sc-PLA as a next-generation polymeric material is discussed. 相似文献
8.
Yana Shymborska Prof. Andrzej Budkowski Prof. Joanna Raczkowska Prof. Volodymyr Donchak Yuriy Melnyk Dr. Viktor Vasiichuk Prof. Yurij Stetsyshyn 《Chemical record (New York, N.Y.)》2024,24(2):e202300217
Responsive polymer systems have the ability to change properties or behavior in response to external stimuli. The properties of responsive polymer systems can be fine-tuned by adjusting the stimuli, enabling tailored responses for specific applications. These systems have applications in drug delivery, biosensors, tissue engineering, and more, as their ability to adapt and respond to dynamic environments leads to improved performance. However, challenges such as synthesis complexity, sensitivity limitations, and manufacturing issues need to be addressed for successful implementation. In our review, we provide a comprehensive summary on stimuli-responsive polymer systems, delving into the intricacies of their mechanisms and actions. Future developments should focus on precision medicine, multifunctionality, reversibility, bioinspired designs, and integration with advanced technologies, driving the dynamic growth of sensitive polymer systems in biomedical applications. 相似文献
9.
Amarjitsing Rajput Akansh Varshney Rashi Bajaj Varsha Pokharkar 《Molecules (Basel, Switzerland)》2022,27(21)
Currently, particular interest among the scientific community is focused on exploring the use of exosomes for several pharmaceutical and biomedical applications. This is due to the identification of the role of exosomes as an excellent intercellular communicator by delivering the requisite cargo comprising of functional proteins, metabolites and nucleic acids. Exosomes are the smallest extracellular vesicles (EV) with sizes ranging from 30–100 nm and are derived from endosomes. Exosomes have similar surface morphology to cells and act as a signal transduction channel between cells. They encompass different biomolecules, such as proteins, nucleic acids and lipids, thus rendering them naturally as an attractive drug delivery vehicle. Like the other advanced drug delivery systems, such as polymeric nanoparticles and liposomes to encapsulate drug substances, exosomes also gained much attention in enhancing therapeutic activity. Exosomes present many advantages, such as compatibility with living tissues, low toxicity, extended blood circulation, capability to pass contents from one cell to another, non-immunogenic and special targeting of various cells, making them an excellent therapeutic carrier. Exosome-based molecules for drug delivery are still in the early stages of research and clinical trials. The problems and clinical transition issues related to exosome-based drugs need to be overcome using advanced tools for better understanding and systemic evaluation of exosomes. In this current review, we summarize the most up-to-date knowledge about the complex biological journey of exosomes from biogenesis and secretion, isolation techniques, characterization, loading methods, pharmaceutical and therapeutic applications, challenges and future perspectives of exosomes. 相似文献
10.
Ileana Ielo Giulia Rando Fausta Giacobello Silvia Sfameni Angela Castellano Maurilio Galletta Dario Drommi Giuseppe Rosace Maria Rosaria Plutino 《Molecules (Basel, Switzerland)》2021,26(19)
Relevant properties of gold nanoparticles, such as stability and biocompatibility, together with their peculiar optical and electronic behavior, make them excellent candidates for medical and biological applications. This review describes the different approaches to the synthesis, surface modification, and characterization of gold nanoparticles (AuNPs) related to increasing their stability and available features useful for employment as drug delivery systems or in hyperthermia and photothermal therapy. The synthetic methods reported span from the well-known Turkevich synthesis, reduction with NaBH4 with or without citrate, seeding growth, ascorbic acid-based, green synthesis, and Brust–Schiffrin methods. Furthermore, the nanosized functionalization of the AuNP surface brought about the formation of self-assembled monolayers through the employment of polymer coatings as capping agents covalently bonded to the nanoparticles. The most common chemical–physical characterization techniques to determine the size, shape and surface coverage of AuNPs are described underlining the structure–activity correlation in the frame of their applications in the biomedical and biotechnology sectors. 相似文献
11.
Giuseppe Cirillo Elvira Pantuso Manuela Curcio Orazio Vittorio Antonella Leggio Francesca Iemma Giovanni De Filpo Fiore Pasquale Nicoletta 《Molecules (Basel, Switzerland)》2021,26(5)
In this work, we combined electrically-conductive graphene oxide and a sodium alginate-caffeic acid conjugate, acting as a functional element, in an acrylate hydrogel network to obtain multifunctional materials designed to perform multiple tasks in biomedical research. The hybrid material was found to be well tolerated by human fibroblast lung cells (MRC-5) (viability higher than 94%) and able to modify its swelling properties upon application of an external electric field. Release experiments performed using lysozyme as the model drug, showed a pH and electro-responsive behavior, with higher release amounts and rated in physiological vs. acidic pH. Finally, the retainment of the antioxidant properties of caffeic acid upon conjugation and polymerization processes (Trolox equivalent antioxidant capacity values of 1.77 and 1.48, respectively) was used to quench the effect of hydrogen peroxide in a hydrogel-assisted lysozyme crystallization procedure. 相似文献
12.
Ali A. Rabaan Rehab Bukhamsin Hajir AlSaihati Saleh A. Alshamrani Jehad AlSihati Hani M. Al-Afghani Roua A. Alsubki Abdulmonem A. Abuzaid Saleh Al-Abdulhadi Yahya Aldawood Abdulmonem A. Alsaleh Yousef N. Alhashem Jenan A. Almatouq Talha Bin Emran Shamsah H. Al-Ahmed Firzan Nainu Ranjan K. Mohapatra 《Molecules (Basel, Switzerland)》2022,27(24)
Conventional anticancer treatments, such as radiotherapy and chemotherapy, have significantly improved cancer therapy. Nevertheless, the existing traditional anticancer treatments have been reported to cause serious side effects and resistance to cancer and even to severely affect the quality of life of cancer survivors, which indicates the utmost urgency to develop effective and safe anticancer treatments. As the primary focus of cancer nanotheranostics, nanomaterials with unique surface chemistry and shape have been investigated for integrating cancer diagnostics with treatment techniques, including guiding a prompt diagnosis, precise imaging, treatment with an effective dose, and real-time supervision of therapeutic efficacy. Several theranostic nanosystems have been explored for cancer diagnosis and treatment in the past decade. However, metal-based nanotheranostics continue to be the most common types of nonentities. Consequently, the present review covers the physical characteristics of effective metallic, functionalized, and hybrid nanotheranostic systems. The scope of coverage also includes the clinical advantages and limitations of cancer nanotheranostics. In light of these viewpoints, future research directions exploring the robustness and clinical viability of cancer nanotheranostics through various strategies to enhance the biocompatibility of theranostic nanoparticles are summarised. 相似文献
13.
Liang Gao Dr. Jinbo Fei Dr. Jie Zhao Wei Cui Dr. Yue Cui Prof. Dr. Junbai Li 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(11):3185-3192
Autofluorescent microcapsules were assembled by covalent cross‐linking of polysaccharide alginate dialdehyde (ADA) derivative and cystamine dihydrochloride (CM) through a layer‐by‐layer (LBL) technique. The formulated Schiff base and disulfide bonds render capsules with pH‐ and redox‐responsive properties for pinpointed intracellular delivery based on the physiological difference between intracellular and extracellular environments. This simple and versatile method could be extended to other polysaccharide derivatives for the fabrication of autofluorescent nano‐ and micromaterials with dual stimuli response for biomedical applications. 相似文献
14.
Nguyen D. Tien Stle Petter Lyngstadaas Joo F. Mano Jonathan James Blaker Hvard J. Haugen 《Molecules (Basel, Switzerland)》2021,26(9)
Chitosan has many useful intrinsic properties (e.g., non-toxicity, antibacterial properties, and biodegradability) and can be processed into high-surface-area nanofiber constructs for a broad range of sustainable research and commercial applications. These nanofibers can be further functionalized with bioactive agents. In the food industry, for example, edible films can be formed from chitosan-based composite fibers filled with nanoparticles, exhibiting excellent antioxidant and antimicrobial properties for a variety of products. Processing ‘pure’ chitosan into nanofibers can be challenging due to its cationic nature and high crystallinity; therefore, chitosan is often modified or blended with other materials to improve its processability and tailor its performance to specific needs. Chitosan can be blended with a variety of natural and synthetic polymers and processed into fibers while maintaining many of its intrinsic properties that are important for textile, cosmeceutical, and biomedical applications. The abundance of amine groups in the chemical structure of chitosan allows for facile modification (e.g., into soluble derivatives) and the binding of negatively charged domains. In particular, high-surface-area chitosan nanofibers are effective in binding negatively charged biomolecules. Recent developments of chitosan-based nanofibers with biological activities for various applications in biomedical, food packaging, and textiles are discussed herein. 相似文献
15.
《Macromolecular bioscience》2018,18(8)
Reflux precipitation polymerization (RPP) represents an effective approach that enables to prepare various types of polymeric nanogels with precise control over the morphology and structure. Owing to facile loading or modification by a variety of functional moieties, rationally designed nanogels pose the possibility to attain a platform for tailoring functional properties that could be widely used for various biomedical applications, such as multifunctional drug delivery, enrichment of functional peptides, separation of specific proteins, as well as detection of circulating tumor cells. This feature article highlights RPP as a promising polymerization strategy that provides access to facile generation of modular nanostructures or multifunctional properties in a diverse range of biomedical applications, proving that RPP has great potential to become one of the most attractive polymerization techniques in polymer chemistry. 相似文献
16.
Dr. Vinod Khatri Dr. Badri Parshad Prof. Ashok K. Prasad Dr. Sumati Bhatia 《European journal of organic chemistry》2023,26(9):e202201360
In the last decades, various efforts have been made to synthesize optimal glycotripods for targeting trimeric glycoproteins like asialoglycoprotein receptor, hemagglutinin, and langerin. All these trimeric glycoproteins have sugar binding pockets which are highly selective for a particular carbohydrate ligand. Optimized glycotripods are high affinity binders and have been used for delivering drugs or even applied as drug candidates. The selection of the tripodal base scaffold together with the length and flexibility of the linker between the scaffold and sugar residue, as important design parameters are discussed in this review. 相似文献
17.
Novel biomaterials are beneficial to the growing fields of drug delivery, cell biology, micro‐devices, and tissue engineering. With recent advances in chemistry and materials science, light is becoming an attractive option as a method to control biomaterial behavior and properties. In this Feature Article, we explore some of the early and recent advances in the design of light‐responsive biomaterials. Particular attention is paid to macromolecular assemblies for drug delivery, multi‐component surface patterning for advanced cell assays, and polymer networks that undergo chemical or shape changes upon light exposure. We conclude with some remarks about future directions of the field.
18.
Bacterial infection is becoming the biggest threat to human health. The scenario is partly due to the ineffectiveness of the conventional antibiotic treatments against the emergence of multidrug‐resistant bacteria and partly due to the bacteria living in biofilms or cells. Adaptive biomaterials can change their physicochemical properties in the microenvironment of bacterial infection, thereby facilitating either their interactions with bacteria or drug release. The trends in treating bacterial infections using adaptive biomaterials‐based systems are flourishing and generate innumerous possibility to design novel antimicrobial therapeutics. This feature article aims to summarize the recent developments in the formulations, mechanisms, and advances of adaptive materials in bacterial infection diagnosis, contact killing of bacteria, and antimicrobial drug delivery. Also, the challenges and limitations of current antimicrobial treatments based on adaptive materials and their clinical and industrial future prospects are discussed. 相似文献
19.
Rongzhen Wu Hongyu Chen Dr. Ninghui Chang Yuzhi Xu Prof. Dr. Jiao Jiao Prof. Dr. Hailong Zhang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(6):1166-1195
Bryostatins are a class of naturally occurring macrocyclic lactones with a unique fast developing portfolio of clinical applications, including treatment of AIDS, Alzheimer's disease, and cancer. This comprehensive account summarizes the recent progress (2014–present) in the development of bryostatins, including their total synthesis and biomedical applications. An emphasis is placed on the discussion of bryostatin 1 , the most-studied analogue to date. This review highlights the synthetic and biological challenges of bryostatins and provides an outlook on their future development. 相似文献
20.
Joseph Jagur‐Grodzinski 《先进技术聚合物》2006,17(6):395-418
Recently investigated applications of polymeric materials for tissue engineering, regenerative medicine, implants, stents, and medical devices are described in the present review. Papers published during the last 2 years about polymeric materials used for preparation of various polymeric scaffolds, methods of fabrication of such scaffolds and their effectiveness in providing support for cell growth and development into various tissues and enhancing or mimicking an extracellular network (ECM's) have been cited. Papers describing the use of such polymeric materials for tissue engineering of cartilage and bones were cited. The exciting developments in the field of regenerative medicine, based on application of the self‐assembled biocompatible polymeric scaffolds for regeneration of tissues and organs are described in some detail. The use of the biocompatible and biodegradable collapsible polymeric stents, as well as the use of biocompatible, but not necessarily biodegradable polymeric materials for protective coatings of metallic stents and reservoirs of drugs, preventing restenosis and other post‐operative complications that may occur after insertion of a stent, have been reviewed. Clinical results pointing out the advantages of such treatments, as well as results indicating their limitations, have been cited. New formulas, for coating implants, stents, and other medical devices, have been discussed. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献