首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Current Applied Physics》2010,10(3):934-941
The aggregation and sedimentation of nanoparticles in nanofluid have significant influences on the stability and applicability of nanofluids. The objective of this study is to propose a model to predict the nanoparticles’ aggregation and sedimentation characteristics. The characteristics are evaluated by the concentration of nanoparticles in nanofluid at different time. The concentration of nanoparticles can be calculated according to the speed and location of each nanoparticle. Then, the speed and location of each nanoparticle can be yielded when the forces on each nanoparticle are determined. For the forces on nanoparticles are related to the space structure of nanoparticle clusters, the clusters’ space structures are simulated. Case study shows that the mean deviation of predicted nanoparticle concentration from experimental data for Fullerence + H2O, Fullerence + Oil and CuO + Oil nanofluids are 25%, 16% and 13%, respectively. The model can provide quantitative prediction of the aggregation and sedimentation characteristics of nanoparticles in nanofluid.  相似文献   

2.
《Ultrasonics sonochemistry》2014,21(4):1570-1577
A rapid in situ biosynthesis of gold nanoparticles (AuNPs) is proposed in which a geranium (Pelargonium zonale) leaf extract was used as a non-toxic reducing and stabilizing agent in a sonocatalysis process based on high-power ultrasound. The synthesis process took only 3.5 min in aqueous solution under ambient conditions. The stability of the nanoparticles was studied by UV–Vis absorption spectroscopy with reference to the surface plasmon resonance (SPR) band. AuNPs have an average lifetime of about 8 weeks at 4 °C in the absence of light. The morphology and crystalline phase of the gold nanoparticles were characterized by transmission electron microscopy (TEM). The composition of the nanoparticles was evaluated by electron diffraction and X-ray energy dispersive spectroscopy (EDS). A total of 80% of the gold nanoparticles obtained in this way have a diameter in the range 8–20 nm, with an average size of 12 ± 3 nm. Fourier transform infrared spectroscopy (FTIR) indicated the presence of biomolecules that could be responsible for reducing and capping the biosynthesized gold nanoparticles. A hypothesis concerning the type of organic molecules involved in this process is also given. Experimental design linked to the simplex method was used to optimize the experimental conditions for this green synthesis route. To the best of our knowledge, this is the first time that a high-power ultrasound-based sonocatalytic process and experimental design coupled to a simplex optimization process has been used in the biosynthesis of AuNPs.  相似文献   

3.
The gas-phase sintering kinetics of nickel nanoparticle agglomerates was investigated by a two step electrical mobility classification. The first electrostatic classifier sorted the agglomerated mono-area nickel nanoparticles generated by pulsed laser ablation, and then the subsequent heating process created the sintered nickel nanostructures. The second electrostatic classifier combined with the condensation nucleus counter scanned the shrinkage of the agglomerated mono-area nickel nanoparticles due to the sintering process. The change in the mono-area particle mobility size measured by the electrical mobility classification technique was compared with the results of the existing coalescence model to extract the kinetic parameters for the sintering of nickel particles. The optimum activation energy found in this study was ∼63 kJ/mol, which falls between the diffusion of nickel atoms (∼49 kJ/mol) and the migration and coalescence of nickel particles (∼78 kJ/mol).  相似文献   

4.
《Current Applied Physics》2010,10(3):797-800
Chitosan is regarded as one of the potential candidates as a gene carrier. However, the poor solubility of chitosan is the major limiting factor in its utilization as a gene carrier. The purpose of this study was to simplify the method of preparing the nanoparticles of chitosan linked with antisense oligonucleotide (asON). The main step was preparing the derivatives of chitosan phosphate (CSP) in order to easily dissolve in aqueous solution. The nanoparticles were formed using a simple mixed method for CSP and asON, and the nanoparticle’s forming condition was optimized so that the nanoparticle’s characterization could be examined. Results showed that it was simple to make the nanoparticles under the optimal condition of 2:1 M proportion of CSP and asON. The size of the nanoparticles was 102.6 ± 12.0 nm, its zeta potential was 1.45 ± 1.75, and the encapsulated ratio of the chitosan crosslinked the asON was 87.6 ± 3.5%. The infrared spectra and electron microscope displayed that chitosan may combine with the asON to form equirotal nanoparticles. In conclusion, it was simple and feasible to form chitosan nanoparticles for asON using the CSP, and the CSP can efficiently encapsulate asON.  相似文献   

5.
The graphenated carbon nanotubes (G-CNTs) were synthesized on monodisperse spherical iron oxide nanoparticles (IONPs) using acetylene as carbon precursor by simple chemical vapor deposition method. The reaction parameters such as temperature and flow of carbon source were optimized in order to achieve G-CNTs with excellent quality and quantity. Transmission electron microscopy (TEM) clearly illustrated that the graphene flakes are forming along the whole length on CNTs. The degree of graphitization was revealed by X-ray diffraction (XRD) analysis and Raman spectroscopic techniques. The intensity of D to G value was less than one which confirms the obtained G-CNTs have high degree of graphitization. The optimum reaction temperature for the IONPs to form metallic clusters which in turn lead to the formation of G-CNTs with high carbon deposition yield is at 900 °C. The TEM shows the CNTs diameter is 50 nm with foiled graphene flakes of diameter around 70 nm. Our results advocate for IONPs as a promising catalytic template for quantitative and qualitative productivity of nanohybrid G-CNTs. The produced G-CNTs with high degree of graphitization might be an ideal candidate for nanoelectronic application like super capacitors and so on.  相似文献   

6.
A simple method for synthesis of gold nanoparticles (AuNPs) using Aspergillum sp. WL-Au was presented in this study. According to UV–vis spectra and transmission electron microscopy images, the shape and size of AuNPs were affected by different parameters, including buffer solution, pH, biomass and HAuCl4 concentrations. Phosphate sodium buffer was more suitable for extracellular synthesis of AuNPs, and the optimal conditions for AuNPs synthesis were pH 7.0, biomass 100 mg/mL and HAuCl4 3 mM, leading to the production of spherical and pseudo-spherical nanoparticles. The biosynthesized AuNPs possessed excellent catalytic activities for the reduction of 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, o-nitroaniline and m-nitroaniline in the presence of NaBH4, and the catalytic rate constants were calculated to be 6.3×10−3 s−1, 5.5×10−3 s−1, 10.6×10−3 s−1, 8.4×10−3 s−1 and 13.8×10−3 s−1, respectively. The AuNPs were also able to catalyze the decolorization of various azo dyes (e.g. Cationic Red X-GRL, Acid Orange II and Acid scarlet GR) using NaBH4 as the reductant, and the decolorization rates reached 91.0–96.4% within 7 min. The present study should provide a potential candidate for green synthesis of AuNPs, which could serve as efficient catalysts for aromatic pollutants degradation.  相似文献   

7.
《Ultrasonics sonochemistry》2014,21(6):1958-1963
A simple sonochemical route was developed for the preparation of gold nanoparticles/boron nitride sheets (AuNPs/BNS) nanocomposites without using reducing or stabilizing agents. Transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and UV–vis absorption spectra were used to characterize the structure and morphology of the nanocomposites. The experimental results showed that AuNPs with approximately 20 nm were uniformly attached onto the BNS surface. It was found that the AuNPs/BNS nanocomposites exhibited good catalytic activity for the reduction of H2O2. The modified electrochemical sensor showed a linear range from 0.04 to 50 mM with a detection limit of 8.3 μM at a signal-to-noise ratio of 3. The findings provide a low-cost approach to the production of stable aqueous dispersions of nanoparticles/BNS nanocomposites.  相似文献   

8.
Supported Sm–Co nanoparticles have been synthesized by short pulse electrodeposition using aqueous solutions containing glycine as complexant and buffering agent. Nanoparticle composition is a function of pulse amplitude and pulse duration. Short pulses in particular minimize oxygen incorporation, down to 3 at%. X-ray photoelectron spectroscopy and X-ray diffraction data support the hypothesis that metallic alloys have indeed been obtained by this technique, along with mixed oxides of the metals. In-plane coercivities of up to 5.3 kOe have been achieved in as-plated nanoparticle assemblies when the relative Sm content was about 20 at% and particle size around 80 nm. These Sm–Co nanoparticles hold the promise to be a practical and inexpensive material for use in the synthesis of permanent magnets by powder processing.  相似文献   

9.
When a liquid is irradiated with high intensities of ultrasound irradiation, acoustic cavitation occurs. Acoustic cavitation generates free radicals from the breakdown of water and other molecules. Cavitation can be fatal to cells and is utilized to destroy cancer tumors. The existence of particles in liquid provides nucleation sites for cavitation bubbles and leads to decrease the ultrasonic intensity threshold needed for cavitation onset. In the present investigation, the effect of gold nanoparticles with appropriate amount and size on the acoustic cavitation activity has been shown by determining hydroxyl radicals in terephthalic acid solutions containing 15, 20, 28 and 35 nm gold nanoparticles sizes by using 1 MHz low level ultrasound. The effect of sonication intensity in hydroxyl radical production was considered.The recorded fluorescence signal in terephthalic acid solutions containing gold nanoparticles was considerably higher than the terephthalic acid solutions without gold nanoparticles at different intensities of ultrasound irradiation. Also, the results showed that the recorded fluorescence signal intensity in terephthalic acid solution containing finer size of gold nanoparticles was lower than the terephthalic acid solutions containing larger size of gold nanoparticles. Acoustic cavitation in the presence of gold nanoparticles can be used as a way for improving therapeutic effects on the tumors.  相似文献   

10.
We investigate selective patterning of ultra-thin 20 nm Indium Tin Oxide (ITO) thin films on glass substrates, using 343, 515, and 1030 nm femtosecond (fs), and 1030 nm picoseconds (ps) laser pulses. An ablative removal mechanism is observed for all wavelengths at both femtosecond and picoseconds time-scales. The absorbed threshold fluence values were determined to be 12.5 mJ cm2 at 343 nm, 9.68 mJ cm2 at 515 nm, and 7.50 mJ cm2 at 1030 nm for femtosecond and 9.14 mJ cm2 at 1030 nm for picosecond laser exposure. Surface analysis of ablated craters using atomic force microscopy confirms that the selective removal of the film from the glass substrate is dependent on the applied fluence. Film removal is shown to be primarily through ultrafast lattice deformation generated by an electron blast force. The laser absorption and heating process was simulated using a two temperature model (TTM). The predicted surface temperatures confirm that film removal below 1 J cm−2 to be predominately by a non-thermal mechanism.  相似文献   

11.
Copper (II) oxide nanoparticles were synthesized in an ultrasound assisted Fenton-like aqueous reaction between copper (II) cations and hydrogen peroxide. The reactions were initiated with the degradation of hydrogen peroxide by ultrasound induced cavitations at 0 °C or 5 °C and subsequent generation of the OH radical. The radical was converted into hydroxide anion in Fenton-like reactions and copper hydroxides were readily converted to oxides without the need of post annealing or aging of the samples. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) surface area analysis. Catalytic activity of the nanoparticles for the hydrogen peroxide assisted degradation of polycyclic aromatic hydrocarbons in the dark was tested by UV–visible spectroscopy with methylene blue as the model compound. The rate of the reaction was first order, however the rate constants changed after the initial hour. Initial rate constants as high as 0.030 min−1 were associated with the high values of surface area, i.e. 70 m2/g. Annealing of the products at 150 °C under vacuum resulted in the decrease of the catalytic activity, underlying the significance of the cavitation induced surface defects in the catalytic process.  相似文献   

12.
Palladium/Iron (Pd/Fe) nanoparticles were prepared by using ultrasound strengthened liquid phase reductive method to enhance dispersion and avoid agglomeration. The dechlorination of 2,4-dichlorophenol (2,4-DCP) by Pd/Fe nanoparticles was investigated to understand its feasibility for an in situ remediation of contaminated groundwater. Results showed that 2,4-DCP was first adsorbed by Pd/Fe nanoparticles, then quickly reduced to o-chlorophenol (o-CP), p-chlorophenol (p-CP), and finally to phenol (P). The induction of ultrasound during the preparation of Pd/Fe nanoparticles further enhanced the removal efficiency of 2,4-DCP, as a result, the phenol production rates increased from 65% (in the absence of ultrasonic irradiation) to 91% (in the presence of ultrasonic irradiation) within 2 h. Our data suggested that the dechlorination rate was dependent on various factors including Pd loading percentage over Fe0, Pd/Fe nanoparticles availability, temperature, mechanical stirring speed, and initial pH values. Up to 99.2% of 2,4-DCP was removed after 300 min reaction with these conditions: Pd loading percentage over Fe0 0.3 wt.%, initial 2,4-DCP concentration 20 mg L?1, Pd/Fe dosage 3 g L?1, initial pH value 3.0, and reaction temperature 25 °C. The degradation of 2,4-DCP followed pseudo-first-order kinetics reaction and the apparent pseudo-first-order kinetics constant was 0.0468 min?1.  相似文献   

13.
《Current Applied Physics》2010,10(2):708-714
A facile strategy for controlling sizes and stabilities of gold nanoparticles synthesized by aqueous reduction method was experimentally examined and reported. When pH of the solution of HAuCl4 and Na3C6H5O7 was controlled by introducing either NaOH or HCl with different concentration, the zeta potential of suspension of gold nanoparticles changed accordingly. With the strategy using a control of pH in a range of 5–9, the zeta potential of synthesized gold nanoparticles was regulated in a range of −60 to −40 mV, resulting in a stable red suspension of gold nanoparticles. Under a condition with pH < 5.0, gold nanoparticles could agglomerate after being kept quiescently for a day due to an adsorption of H+ on their surface, which in turn enhanced the attractive van der Waals interaction. On the other hand, synthesis of gold nanoparticles with pH > 9.1 would provide a lower amount of gold nanoparticles due to the formation of NaAuO2. Based on these results, a potential mechanism of gold nanoparticle synthesis was also discussed.  相似文献   

14.
Magnetic iron oxide nanoparticles were successfully prepared by a novel reverse precipitation method with the irradiation of ultrasound. TEM, XRD and SQUID analyses showed that the formed particles were magnetite (Fe3O4) with about 10 nm in their diameter. The magnetite nanoparticles exhibited superparamagnetism above 200 K, and the saturation magnetization was 32.8 emu/g at 300 K. The sizes and size distributions could be controlled by the feeding conditions of FeSO4 · 7H2O aqueous solution, and slower feeding rate and lower concentration lead to smaller and more uniform magnetite nanoparticles. The mechanisms of sonochemical oxidation were also discussed. The analyses of sonochemically produced oxidants in the presence of various gases suggested that besides sonochemically formed hydrogen peroxide, nitrite and nitrate ions contributed to Fe(II) ion oxidation.  相似文献   

15.
Lead sulfide (PbS) quantum dots stabilized by 1,2-benzenedimethanethiol can be synthesized by mixing Pb(NO3)2 and Na2S solutions in ethanol under ultrasound irradiation. The PbS quantum dots (2.7 and 3.6 nm in diameter) are characterized by their absorption and fluorescence spectra in the near infrared region and by other surface analytical techniques. With addition of single-walled carbon nanotubes (SWNT) to the system, this ultrasound-assisted procedure allows attachment of PbS nanoparticles to SWNT surface via π–π stacking, thus providing a simple one-pot method for preparation of SWNT–PbS nanoparticle composite materials. Using the ultrasound-assisted method for synthesizing silica composites containing PbS nanoparticles by a sol–gel process is also described.  相似文献   

16.
Uniform iron oxide nanoparticles in the size range from 10 to 24 nm and polydisperse 14 nm iron oxide particles were prepared by thermal decomposition of Fe(III) carboxylates in the presence of oleic acid and co-precipitation of Fe(II) and Fe(III) chlorides by ammonium hydroxide followed by oxidation, respectively. While the first method produced hydrophobic oleic acid coated particles, the second one formed hydrophilic, but uncoated, nanoparticles. To make the iron oxide particles water dispersible and colloidally stable, their surface was modified with poly(ethylene glycol) and sucrose, respectively. Size and size distribution of the nanoparticles was determined by transmission electron microscopy, dynamic light scattering and X-ray diffraction. Surface of the PEG-functionalized and sucrose-modified iron oxide particles was characterized by Fourier transform infrared (FT-IR) and Raman spectroscopy and thermogravimetric analysis (TGA). Magnetic properties were measured by means of vibration sample magnetometry and specific absorption rate in alternating magnetic fields was determined calorimetrically. It was found, that larger ferrimagnetic particles showed higher heating performance than smaller superparamagnetic ones. In the transition range between superparamagnetism and ferrimagnetism, samples with a broader size distribution provided higher heating power than narrow size distributed particles of comparable mean size. Here presented particles showed promising properties for a possible application in magnetic hyperthermia.  相似文献   

17.
The heating mechanism and influencing factors of magnetite particles in a 63 kHz alternating magnetic field and 7 kA/m were studied. The results from in vivo heating experiments suggest that magnetite particles can generate enough energy to heat tumor tissue and perform effective hyperthermia. A novel model for predicting power losses has been proposed.  相似文献   

18.
Iron and cobalt nanoparticle fluids have been prepared by inert-gas condensation into an oil/surfactant mixture. Superparamagnetic iron fluids (mean particle size=11.6±0.4 nm) and ferromagnetic cobalt fluids (mean particle size=51.6±3.4 nm) produced by this technique are promising candidates for magnetic targeting and hyperthermia applications.  相似文献   

19.
Microbubbles have been widely studied as ultrasound contrast agents for diagnosis and as drug/gene carriers for therapy. However, their size and stability (lifetime of 5–12 min) limited their applications. The development of stable nanoscale ultrasound contrast agents would therefore benefit both. Generating bubbles persistently in situ would be one of the promising solutions to the problem of short lifetime. We hypothesized that bubbles could be generated in situ by providing stable air nuclei since it has been found that the interfacial nanobubbles on a hydrophobic surface have a much longer lifetime (orders of days). Mesoporous silica nanoparticles (MSNs) with large surface areas and different levels of hydrophobicity were prepared to test our hypothesis. It is clear that the superhydrophobic and porous nanoparticles exhibited a significant and strong contrast intensity compared with other nanoparticles. The bubbles generated from superhydrophobic nanoparticles sustained for at least 30 min at a MI of 1.0, while lipid microbubble lasted for about 5 min at the same settings. In summary MSNs have been transformed into reliable bubble precursors by making simple superhydrophobic modification, and made into a promising contrast agent with the potentials to serve as theranostic agents that are sensitive to ultrasound stimulation.  相似文献   

20.
Glassy carbon particles (millimetric or micrometric sizes) dispersions in water were treated by ultrasound at 20 kHz, either in a cylindrical reactor, or in a “Rosette” type reactor, for various time lengths ranging from 3 h to 10 h. Further separations sedimentation allowed obtaining few nanoparticles of glassy carbon in the supernatant (diameter <200 nm). Thought the yield of nanoparticle increased together with the sonication time at high power, it tended to be nil after sonication in the cylindrical reactor. The sonication of glassy carbon micrometric particles in water using “Rosette” instead of cylindrical reactor, allowed preparing at highest yield (1–2 wt%), stable suspensions of carbon nanoparticles, easily separated from the sedimented particles. Both sediment and supernatant separated by decantation of the sonicated dispersions were characterized by laser granulometry, scanning electron microscopy, X-ray microanalysis, and Raman and infrared spectroscopies. Their multiscale organization was investigated by transmission electron microscopy as a function of the sonication time. For sonication longer than 10 h, these nanoparticles from supernatant (diameter <50 nm) are aggregated. Their structures are more disordered than the sediment particles showing typical nanometer-sized aromatic layer arrangement of glassy carbon, with closed mesopores (diameter ∼3 nm). Sonication time longer than 5 h has induced not only a strong amorphization (subnanometric and disoriented aromatic layer) but also a loss of the mesoporous network nanostructure. These multi-scale organizational changes took place because of both cavitation and shocks between particles, mainly at the particle surface. The sonication in water has induced also chemical effects, leading to an increase in the oxygen content of the irradiated material together with the sonication time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号