首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
单云  张红琳  张凤 《应用化学》2015,32(7):837-842
分别采用改进Hummers方法和水热还原法制备了氧化石墨烯(GO)和还原氧化石墨烯(RGO)。 GO和RGO经透射电子显微镜(TEM)、紫外-可见吸收光谱(UV-Vis)、红外光谱(IR)、荧光发射和激发光谱(PL、PLE)等技术手段进行了表征。 荧光发射光谱显示,氧化石墨烯(GO)在可见光的激发下可以得到波长在600~800 nm范围内的宽谱近红外荧光。 通过比较氧化石墨烯水热还原前后的光谱变化,发现氧化石墨烯近红外荧光起源于氧化石墨烯的表面含氧基团,如C=O、COOH。 近红外荧光穿透性好、对生物组织损坏小,非常适合于生物成像,预示着氧化石墨烯在生物成像方面的应用潜力。  相似文献   

2.
In this work, graphene oxide (GO) and its reduced graphene oxide-zinc oxide nanocomposite (rGO-ZnO) was used for the removal of Cr (VI) from aqueous medium. By employing a variety of characterization techniques, morphological and structural properties of the adsorbents were determined. The adsorption study was done by varying concentration, temperature, pH, time, and amount of adsorbent. The results obtained confirmed that rGO-ZnO is a more economical and promising adsorbent for removing Cr (VI) as compared to GO. Kinetic study was also performed, which suggested that sorption of Cr (VI) follows the pseudo-first-order model. For equilibrium study, non-linear Langmuir was found a better fitted model than its linearized form. The maximum adsorption capacity calculated for GO and rGO-ZnO nanocomposite were 19.49 mg/g and 25.45 mg/g, respectively. Endothermic and spontaneous nature of adsorption was detected with positive values of ΔS (change in entropy), which reflects the structural changes happening at the liquid/solid interface.  相似文献   

3.
还原态氧化石墨烯的制备及其对重金属离子的吸附性能   总被引:1,自引:1,他引:1  
王波张  帆黄   《应用化学》2014,31(4):502-504
通过乙二胺(EDA)对氧化石墨烯(GO)进行还原制备了还原态氧化石墨烯(RGO),利用红外光谱、拉曼光谱、热重分析和扫描电子显微镜等技术对制得的RGO进行了表征。 考察了RGO复合材料在静态吸附条件下对Pb(Ⅱ)、Cd(Ⅱ)、Cu(Ⅱ)和Mn(Ⅱ)金属离子的吸附性能。 结果表明,该吸附材料对上述4种重金属离子在25 ℃时的静态饱和吸附量分别为396.6、115.3、54.2和38.6 mg/g。 吸附于RGO上的Pb(Ⅱ)可用0.05 mol/L HCl溶液进行洗脱,再生后的RGO重复使用3次时吸附量能达到首次吸附量的85%。  相似文献   

4.
Graphene oxide (GO) was synthesized and reduced by chemical, hydrothermal and electrochemical methods. The GO and reduced GO was characterized by XRD, FTIR, absorption, Raman, FESEM and AFM methods. Chemically reduced GO (CrGO) was observed to efficiently enhance the electron transfer kinetics of varenicline compared to hydrothermally and electrochemically reduced GO. Hence, CrGO was used for the fabrication of an electrochemical sensor for the determination of varenicline in the concentration range of 0.03–50 µM with a limit of detection of 7.03 nM. The applicability of the proposed sensor was demonstrated by analyzing the biological samples containing varenicline.  相似文献   

5.
The chemical reduction efficiencies of graphene oxide (GO) are critically important in achieving graphene-like properties in reduced graphene oxide (rGO). In this study, we assessed GO lateral size and its degree of oxidation effect on its chemical reduction efficiency in both suspension and film and the electrical conductivity of the corresponding rGO films. We show that while GO-reduction efficiency increases with the GO size of lower oxidation in suspension, the trend is opposite for film. FESEM, XRD, and Raman analyses reveal that the GO reduction efficiency in film is affected not only by GO size and degree of oxidation but also by its interlayer spacing (restacking) and the efficiency is tunable based on the use of mixed GO. Moreover, we show that the electrical conductivity of rGO films depends linearly on the C/O and Raman ID/IG ratio of rGO and not the lateral size of GO. In this study, an optimal chemical reduction was achieved using premixed large and small GO (L/SGO) at a ratio of 3:1 (w/w). Consequently, the highest electrical conductivity of 85,283 S/m was achieved out of all rGO films reported so far. We hope that our findings may help to pave the way for a simple and scalable method to fabricate tunable, electrically conductive rGO films for electronic applications.  相似文献   

6.
以天然鳞片石墨为原料,采用改良的Hummers方法,制备了高纯度的薄层或单层氧化石墨(GO);并以抗坏血酸为还原剂,通过自组装还原的方式成功制备了具有三维多孔独巨石结构的还原氧化石墨烯(rGO)气凝胶,其形貌和结构经FT-IR, SEM, TEM, XRD和XPS表征。并对其作为锂离子电池负极材料的电化学性能进行了测试。结果表明:rGO气凝胶独特的形貌和结构提高了其比容量和循环性能,在100 mA·g-1电流密度下首周放电比容量可达1 700 mAh·g-1,首周充电比容量达710 mAh·g-1,经过100周循环后放电比容量仍可保持在450 mAh·g-1,库伦效率保持在98%。  相似文献   

7.
8.
9.
10.
通过将吡咯单体在低温下与氧化石墨烯进行原位聚合,获得聚吡咯/石墨烯(Ppy/CRGO)复合材料.采用场发射电子显微镜(FESEM)、红外(FT-IR)和热重分析(TGA)对复合物的表面形貌、结构进行表征.FESEM结果表明,通过控制氧化石墨烯(GO)和吡咯单体的质量比例,可以对复合物的层状和厚度进行调控.FT-IR和TGA结果表明,聚吡咯(Ppy)是通过化学键合的方式与氧化石墨烯复合在一起.通过机械冷压法将粉末状Ppy/CRGO复合物压成圆片电极,并探讨了石墨烯和聚吡咯复合比例、反应时间、烘干温度和孔隙率等因素对Ppy/CRGO复合物电极的电学和电化学性能的影响.结果表明,Ppy与CRGO质量比为10∶1所制得的Ppy/CRGO复合物的电容量为421 F·g-1,通过在电极中引入孔隙,电容量能进一步提升为509 F·g-1.  相似文献   

11.
Tungsten oxide/graphene hybrid materials are attractive semiconductors for energy-related applications. Herein, we report an asymmetric supercapacitor (ASC, HRG//m-WO3 ASC), fabricated from monoclinic tungsten oxide (m-WO3) nanoplates as a negative electrode and highly reduced graphene oxide (HRG) as a positive electrode material. The supercapacitor performance of the prepared electrodes was evaluated in an aqueous electrolyte (1 m H2SO4) using three- and two-electrode systems. The HRG//m-WO3 ASC exhibits a maximum specific capacitance of 389 F g−1 at a current density of 0.5 A g−1, with an associated high energy density of 93 Wh kg−1 at a power density of 500 W kg−1 in a wide 1.6 V operating potential window. In addition, the HRG//m-WO3 ASC displays long-term cycling stability, maintaining 92 % of the original specific capacitance after 5000 galvanostatic charge–discharge cycles. The m-WO3 nanoplates were prepared hydrothermally while HRG was synthesized by a modified Hummers method.  相似文献   

12.
Two effective methods to prepare reduced graphene oxide (rGO)/hematite nanostructured photoanodes and their photoelectrochemical characterization towards water splitting reactions are presented. First, graphene oxide (GO) is reduced to rGO using hydrazine in a basic solution containing tetrabutylammonium hydroxide (TBAOH), and then deposited over the nanostructured hematite photoanodes previously treated at 750 °C for 30 min. The second method follows the deposition of a paste containing a mixture of hematite nanoparticles and rGO sheets by the doctor‐blade method, varying the rGO concentration. Since hematite suffers from low electron mobility, a low absorption coefficient, high recombination rates and slow reaction kinetics, the incorporation of rGO in the hematite can overcome such limitations due to graphene's exceptional properties. Using the first method, the rGO incorporation results in a photocurrent density increase from 0.56 to 0.82 mA cm?2 at 1.23 VRHE. Our results indicate that the rGO incorporation in the hematite photoanodes shows a positive effect in the reduction of the electron–hole recombination rate.  相似文献   

13.
Laser-reduced graphene oxide (LRGO) on a polyethylene terephthalate (PET) substrate was prepared in one step to obtain the LRGO grid electrode for sensitive carbaryl determination. The grid form results in a grid distribution of different electrochemically active zones affecting the electroactive substance diffusion towards the electrode surface and increasing the electrochemical sensitivity for carbaryl determination. Carbaryl is electrochemically irreversibly oxidized at the secondary amine moiety of the molecule with the loss of one proton and one electron in the pH range from 5 to 7 by linear scan voltammetry (LSV) on the LRGO grid electrode with a scan rate of 300 mV/s. Some interference of the juice matrix molecules does not significantly affect the LSV oxidation current of carbaryl on the LRGO grid electrode after adsorptive accumulation without applied potential. The LRGO grid electrode can be used for LSV determination of carbaryl in fruit juices in the concentration range from 0.25 to 128 mg/L with LOD of 0.1 mg/L. The fabrication of the LRGO grid electrode opens up possibilities for further inexpensive monitoring of carbaryl in other fruit juices and fruits  相似文献   

14.
Graphene as a material for optoelectronic design applications has been significantly restricted owing to zero bandgap and non-compatible handling procedures compared with regular microelectronic ones. In this work, nitrogen-doped reduced graphene oxide (N-rGO) with tunable optical bandgap and enhanced electrical conductivity was synthesized via a microwave-assisted hydrothermal method. The properties of the synthesized N-rGO were determined using XPS, FTIR and Raman spectroscopy, UV/vis, as well as FESEM techniques. The UV/vis spectroscopic analysis confirmed the narrowness of the optical bandgap from 3.4 to 3.1, 2.5, and 2.2 eV in N-rGO samples, where N-rGO samples were synthesized with a nitrogen doping concentration of 2.80, 4.53, and 5.51 at.%. Besides, an enhanced n-type electrical conductivity in N-rGO was observed in Hall effect measurement. The observed tunable optoelectrical characteristics of N-rGO make it a suitable material for developing future optoelectronic devices at the nanoscale.  相似文献   

15.
以制备的氧化石墨凝胶和聚苯胺纳米线为原料, 将二者按一定的质量比进行混合超声分散, 再以混合分散液为前驱体采用一步水热法制备得到三维还原氧化石墨烯(RGO)/聚苯胺(PANI) (RGP)复合材料, 采用扫描电镜(SEM), 透射电镜(TEM), X射线衍射(XRD), 傅里叶变换红外(FT-IR)光谱, X射线光电子能谱(XPS)和电化学测试等分析研究了复合材料的形貌、结构和超级电容性能. 结果表明, 复合材料既保持了还原氧化石墨烯的基本形貌, 又能使聚苯胺较好地镶嵌在还原氧化石墨烯的网状结构中; 且当氧化石墨与聚苯胺的质量比为1:1时复合材料在0.5 A·g-1电流密度下比电容可高达758 F·g-1, 即使在大电流密度(30 A·g-1)下其比容量仍高达400 F·g-1,在1A·g-1电流密度下循环1000次后比容量保持率为86%, 表现出了良好的倍率性能和循环稳定性, 其超级电容性能远优于单纯的还原氧化石墨烯和聚苯胺, 其优异的超级电容性能可归咎于二者的相互协同作用.  相似文献   

16.
Field‐grading materials (FGMs) are used to reduce the probability for electrical breakdowns in critical regions of electrical components and are therefore of great importance. Usually, FGMs are heavily filled (40 vol.%) with semi‐conducting or conducting particles. Here, polymer‐grafted reduced graphene oxide (rGO) is used as a filler to accomplish percolated networks at very low filling ratios (<2 vol.%) in a semi‐crystalline polymer matrix: poly(ethylene‐co‐butyl acrylate) (EBA). Various simulation models are used to predict the percolation threshold and the flake‐to‐flake distances, to complement the experimental results. A substantial increase in thermal stability of rGO is observed after surface modification, either by silanization or subsequent polymerizations. The non‐linear DC resistivity of neat and silanized rGO and its trapping of charge‐carriers in semi‐crystalline EBA are demonstrated for the first time. It is shown that the polymer‐grafted rGO improve the dispersibility in the EBA‐matrix and that the graft length controls the inter‐flake distances (i.e. charge‐carrier hopping distances). By the appropriate selection of graft lengths, both highly resistive materials at 10 kV mm‐1 and FGMs with a large and distinct drop in resistivity (six decades) are obtained, followed by saturation. The nonlinear drop in resistivity is attributed to narrow inter‐flake distance distributions of grafted rGO.  相似文献   

17.
采用还原氧化石墨烯-金纳米颗粒(RGO-Au NPs)作为免疫传感器的固定基质,将C-反应蛋白(CRP)抗体固定在玻碳电极表面,用蒽醌二羧酸作为标记物,制成夹心型的CRP免疫传感器。在最优实验条件下,通过示差脉冲伏安法对CRP的含量进行检测。该传感器在0.25~100 ng/m L范围内具有良好的线性关系,检出限为0.08 ng/m L,线性系数为0.997。该传感器为C-反应蛋白的检测提供了一种新的手段。  相似文献   

18.
The electrochemical properties of high surface area transition metal oxide aerogels are extremely interesting because aerogels serve to amplify surface effects. As a result, the electrochemical properties are dominated by surfaces rather than by bulk behavior. In the case of vanadium oxide aerogels this leads to extraordinary electrochemical properties, including an extremely high capacity for lithium and electrochemical responses that are both battery-like and capacitor-like. By exploiting sol-gel synthesis, it is possible to synthesize nanocomposite electrodes in which aerogels are in intimate contact with carbon nanotubes. The resulting nanocomposites exhibit superior electrochemical properties, especially at high discharge.  相似文献   

19.
A novel and sensitive electrochemical sensor was developed for the simultaneous determination of the butylated hydroxyanisole (BHA) and tert‐butylhydroquinone (TBHQ) antioxidants in biodiesel samples employing the differential pulse voltammetry (DPV). In this sense, a glassy carbon electrode (GCE) modified with copper (II) tetrasulfonated phthatocyanine immobilized on reduced graphene oxide (CuTSPc/rGO) allowed the detection of BHA and TBHQ at potentials lower than those observed at unmodified electrodes. The sensor was characterized by cyclic voltammetry (CV) and linear scan voltammetry (LSV). After optimization of the experimental parameters, the analytical curves for simultaneous determination of BHA and TBHQ by DPV technique demonstrated an excellent linear response from 0.1 to 500 µmol L?1 with detection limit of 0.045 µmol L?1 for TBHQ and 0.036 µmol L?1 for BHA. Finally, the proposed method was successfully applied in the simultaneous determination of BHA and TBHQ in six biodiesel samples, and the results obtained were found to be similar to those obtained using the HPLC method with agreement at 95 % confidence level.  相似文献   

20.
Graphene and its derivatives are frequently used in cancer therapy, and there has been widespread interest in improving the therapeutic efficiency of targeted drugs. In this paper, the geometrical structure and electronic effects of anastrozole(Anas), camptothecin(CPT), gefitinib (Gefi), and resveratrol (Res) on graphene and graphene oxide(GO) were investigated by density functional theory (DFT) calculations and molecular dynamics (MD) simulation. Meanwhile, we explored and compared the adsorption process between graphene/GO and four drug molecules, as well as the adsorption sites between carriers and payloads. In addition, we calculated the interaction forces between four drug molecules and graphene. We believe that this work will contribute to deepening the understanding of the loading behaviors of anticancer drugs onto nanomaterials and their interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号