首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The idea (Hancock, 1992) that the dominant architectural feature in controlling metal ion selectivity in both open-chain and macro-cyclic ligands is the size of the chelate ring is pursued further. It is shown that when more than one or two six-membered chelate rings are present in the complex of a nitrogen donor macrocycle, the steric requirements of the six-membered chelate ring of a M-N bond length of 1.6 Å and N-M-N angle of 109.5° become particularly severe, and can only be met by a small tetrahedral metal ion. Thus, the ligand 16-aneN4 (1,5,9,13-tetraazacyclohexadecane) forms complexes of low stability with all metal ions studied to date, but a conformer of 16-aneN4 is identified by MM calculation which is predicted to form complexes of high stability with very small tetrahedral metal ions. The question of the M-O bond length and O-M-O angles that will produce minimum strain in chelate rings containing neutral oxygen donor is addressed. The observation (Hay, 1993) that the geometry around an ethereal oxygen coordinated to a metal ion approximates to trigonal planar rather than tetrahedral leads to ideal M-O-C angles of about 126°, which leads to minimum strain energy with much longer M-L lengths in chelate rings containing neutral oxygen donors than neutral nitrogen donors. It is suggested that this fact accounts for the general tendency of crown ethers to form their most stable complexes with potassium out of the alkali metal ions, and also accounts for the very small macrocyclic effect observed in complexes of macrocycles containing mixed nitrogen and oxygen donor groups. The preferred geometry of four-membered chelate rings is discussed, and it is shown that higher coordination numbers of metal ions are associated with four membered chelate rings, and that four membered chelate rings may be used to engineer preference for larger metal ions. Very rigid reinforced chelate rings are discussed, and it is shown that open-chain ligands with reinforced bridges between the donor atoms can display all the thermodynamic and kinetic aspects associated with macrocyclic ligands.  相似文献   

2.
Reactions of MI(CH3)(PPh3)2 or MCl(CH2COR)(PPh3)2 (M = Pd, Pt) with sodium dicyanomethanide in methanol gave novel metal complexes. Spectroscopic data suggest that these complexes contain either an iminoether chelate ring or a carbon-carbon chelate ring which was derived from CH(CN)2-.  相似文献   

3.
Density Functional Theory (UB3LYP/6‐311++G(d,p)) calculations of the affinity of the pentaaqua nickel(II) complex for a set of phosphoryl [O?P(H)(CH3)(PhR)], imino [HN?C(CH3)(PhR)], thiocarbonyl [S?C(CH3)(PhR)] and carbonyl [O?C(CH3)(PhR)] ligands were performed, where R?NH2, OCH3, OH, CH3, H, Cl, CN, and NO2 is a substituent at the para‐position of a phenyl ring.The affinity of the pentaaqua nickel(II) complex for these ligands was analized and quantified in terms of interaction enthalpy (ΔH), Gibbs free energy (ΔG298), geometric and electronic parameters of the resultant octahedral complexes. The ΔH and ΔG298 results show that the ligand coordination strength increases in the following order: carbonyl < thiocarbonyl < imino < phosphoryl. This coordination strength order is also observed in the analysis of the metal‐ligand distances and charges on the ligand atom that interacts with the Ni(II) cation. The electronic character of the substituent R is the main parameter that affects the strength of the metal‐ligand coordination. Ligands containing electron‐donating groups (NH2, OCH3, OH) have more exothermic ΔH and ΔG298 than ligands with electron‐withdrawing groups (Cl, CN, NO2). The metal‐ligand interaction decomposed by means of the energy decomposition analysis (EDA) method shows that the electronic character of the ligand modulates all the components of the metal‐ligand interaction. The absolute softness of the free ligands is correlated with the covalent contribution to the instantaneous interaction energy calculated using the EDA method. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
The two hexamines (H2N? CH2? CH2? )2N? (CH2)n? N(? CH2? CH2? NH2)2, «penten» (n = 2) and «ptetraen» (n=3) have been investigated as chelating agents for COIII (preparative Study) and some of the divalent metal ions (potentiometric and calorimetric studies). Both amines function as sexadentate ligands for CoIII, CoII and NiII, but one of the terminal aminogroups is much easier detached from the metal in case of M (penten)v+ than in case of M(ptetraen)v+, thus revealing more strain in the fivemembered chelate rings of the girdle plane of the «penten» complexes. On the other hand, the sixmembered chelate ring in M(ptetraen)v+ is more strained than the five-membered ring comprising the tertiary nitrogen atoms of M(penten)v+ CuII and ZnII coordinate with both ligands only 5 of the 6 basic nitrogen atoms present. Both hexaamines function as sexadentates again with MnII, but the metal is coordinated with a molecule of water in addition to the 6 nitrogen atoms in the «penten» complex in contrast to the «ptetraen» complex. The thermodynamic functions for the protonation of the hexamines and for the addition of metal ions in aqueous solution are understood in almost every detail. The dielectric shielding of the charges of the reactants exerted by the solvent has to be taken into account; it is reduced by electrostriction as well as by an increase in temperature. It is shown that the approach of charges of equal sign often is an exothermic process.  相似文献   

5.
Eight cyclic triamines with ring sizes between 9 and 13 were synthesized by the p-toluenesulfonate method. The open-chain triamines bis(2-aminoethyl)amine (dien) and bis(3-aminopropyl)amine (diprop) were used as starting materials. In some cases, the corresponding dimeric cyclic hexaamines have been isolated and characterized as major by-products. The complexation of Cu(I) by the triamines has been studied potentiometrically in CH3CN/H2O. All ligands L form ternary complexes [Cu(CH3CN)L]+. The corresponding association constants vary between 1011 and 107, decreasing with increasing ring size. In addition, complexes [Cu(CH3CN)yLH]2+, y = 1 or 2, are found as less important species with maximum concentrations of 7 to 50%.  相似文献   

6.
We employed the Density Functional Theory along with small basis sets, B3LYP/LANL2DZ, for the study of FeTIM complexes with different pairs of axial ligands (CO, H2O, NH3, imidazole and CH3CN). These calculations did not result in relevant changes of molecular quantities as bond lengths, vibrational frequencies and electronic populations supporting any significant back-donation to the carbonyl or acetonitrile axial ligands. Moreover, a back-donation mechanism to the macrocycle cannot be used to explain the observed changes in molecular properties along these complexes with CO or CH3CN. This work also indicates that complexes with CO show smaller binding energies and are less stable than complexes with CH3CN. Further, the electronic band with the largest intensity in the visible region (or close to this region) is associated to the transition from an occupied 3d orbital on iron to an empty π orbital located at the macrocycle. The energy of this Metal-to-Ligand Charge Transfer (MLCT) transition shows a linear relation to the total charge of the macrocycle in these complexes as given by Mulliken or Natural Population Analysis (NPA) formalisms. Finally, the macrocycle total charge seems to be influenced by the field induced by the axial ligands.  相似文献   

7.
A series of RuII polypyridyl complexes of the structural design [RuII(R?tpy)(NN)(CH3CN)]2+ (R?tpy=2,2′:6′,2′′‐terpyridine (R=H) or 4,4′,4′′‐tri‐tert‐butyl‐2,2′:6′,2′′‐terpyridine (R=tBu); NN=2,2′‐bipyridine with methyl substituents in various positions) have been synthesized and analyzed for their ability to function as electrocatalysts for the reduction of CO2 to CO. Detailed electrochemical analyses establish how substitutions at different ring positions of the bipyridine and terpyridine ligands can have profound electronic and, even more importantly, steric effects that determine the complexes’ reactivities. Whereas electron‐donating groups para to the heteroatoms exhibit the expected electronic effect, with an increase in turnover frequencies at increased overpotential, the introduction of a methyl group at the ortho position of NN imposes drastic steric effects. Two complexes, [RuII(tpy)(6‐mbpy)(CH3CN)]2+ (trans‐[ 3 ]2+; 6‐mbpy=6‐methyl‐2,2′‐bipyridine) and [RuII(tBu?tpy)(6‐mbpy)(CH3CN)]2+ (trans‐[ 4 ]2+), in which the methyl group of the 6‐mbpy ligand is trans to the CH3CN ligand, show electrocatalytic CO2 reduction at a previously unreactive oxidation state of the complex. This low overpotential pathway follows an ECE mechanism (electron transfer–chemical reaction–electron transfer), and is a direct result of steric interactions that facilitate CH3CN ligand dissociation, CO2 coordination, and ultimately catalytic turnover at the first reduction potential of the complexes. All experimental observations are rigorously corroborated by DFT calculations.  相似文献   

8.
Abstract

The origin of selectivity enhancement for large metal ions that occurs on the addition of neutral oxygen donors to existing ligands in such a way as to form additional five-membered chelate rings is analyzed in terms of inductive and steric effects. Molecular mechanics calculations are used to examine the degree of strain that develops in five-membered, aliphatic chelate rings of ethers and amines as a function of the size and charge of the metal ion. Although five-membered chelate rings that contain saturated neutral oxygen donors are found to exhibit an inherent steric preference for large metal ions, experimental evidence suggests that for the majority of cases where enhanced selectivity for larger metal ions has been observed after the addition of neutral oxygen donors, the selectivity enhancement is largely the result of steric and inductive changes to other donor groups in the ligand, e.g. amines, rather than the result of increasing the denticity of the ligand.  相似文献   

9.
Abstract

The platinum allyl complex, [(η3[sbnd]CH2C(CH3)C[dbnd]CH2)Pt(PPh3)2]+, behaves differently to-ward nucleophiles depending on their hardness. In the reaction with a “hard” nucleophile, nucleophilic attack occurs at the metal center. A “soft” nucleophile bonds to the middle carbon of the allyl ligand. The results of molecular orbital calculations suggest that both reactions are orbital controlled, which points to the metal as the preferred site of attack. However, the soft nucleophile attacks the allyl ligand due to steric constraints. A Mulliken population analysis reveals that the platinum center is directly bonded to only the two end carbons of the allyl ligand. The effect of basis set size and substitution of hydrogens for phenyl groups on the results of the calculations was also investigated. The choice of basis set had the largest effect on the charge distribution of the molecule. On the other hand, basis set size and inclusion of phenyl substituents on the phosphine ligands had minimal effect on the optimized structure of the complex.  相似文献   

10.
Chelate Complexes of the Type M(CO)4(Me2XGeMe2CH2X′Me2) (M) = Cr, Mo, W; X, X′ = N, P, As; Me = CH3) The ligands (Me2)XGeMe2CH2X′Me2 (M) = Cr, Mo, W) react with M(CO)4norbor (norbor = Norbornadiene) (M = Cr, Mo, W) yielding the chelate complexes M(CO)4(Me)2XGeMe2CH2X′Me2). compounds of low thermal stability are formed with the ligands (Me2NGeMe2CH2X′Me2 because of the weak donor ability of the GeNMe2 group and with Me2AsGeMe2CH2NMe2 caused by strong steric ring tension. The new compounds are characterized by analytical and spectroscopic (n.m.r., i.r., m.s.) investigations.  相似文献   

11.
Interactions of 3-R-and 2-R pyridine (R=CH3, Cl, NH2) with Ni(II)-exchanged montmorillonite have been studied. Thermal and X-ray analyses indicate that pyridine derivatives are intercalated into the interlayer spaces of montmorillonite. Infrared spectral data shown that the Lewis and/or Brönsted type of interactions of pyridine derivatives is connected with different steric and inductive effects of the substituents (R) on the pyridine ring. The alkylpyridines increase the electron density on the donor nitrogen atom and support the coordination to the central atom. The halogen substituents have a negative inductive effect (–I), so that those ligands show a lower basicity and weaker σ-bonding properties than pyridine and also the lower possibility of the coordination.  相似文献   

12.
Polybenzyl ether type dendrons bearing the crown ether moieties at the periphery, namely, crowned dendrons were synthesized, and the effect of complex formation on their flexibility with metal-ion binding properties was examined. Upon addition of Na+, 1H NMR spectra of the crowned dendrons in CD3CN were significantly broadened, reflecting the flexibility restriction of the crowned dendrons by the complex formation with Na+. Such a significant flexibility restriction was observed only with Na+, although ESI-MS studies revealed that the crowned dendrons formed 1:2 complexes (a metal ion:the crown ether moiety) regardless of the kind of metal ions. The flexibility restriction became significant with increasing dendron generation on the basis of 1H NMR spectra and spin-lattice relaxation time (T1) measurements. Binding constants of the crowned dendrons with metal ions in CD3CN decreased with the increase of the dendron generation, reflecting an influence of the charge repulsion as well as a dendrimer effect to cause the steric hindrance. The examination of UV-vis absorption spectra for complexes of the crowned dendron with metal picrates in THF displayed the formation of a loose ion-pair complex with Na+, namely, a typical sandwich type complex. However, in CH3CN, all metal picrates were solvated to be in a loose ion-pair even without complex formation. These results suggested that the control of macromolecular flexibility with metal ions is feasible by the integration of crown ether moieties with a dendritic structure.  相似文献   

13.
N‐Heterocyclic carbene based pincer ligands bearing a central silyl donor, [CSiC], have been envisioned as a class of strongly σ‐donating ligands that can be used for synthesizing electron‐rich transition‐metal complexes for the activation of inert bonds. However, this type of pincer ligand and complexes thereof have remained elusive owing to their challenging synthesis. We herein describe the first synthesis of a CSiC pincer ligand scaffold through the coupling of a silyl–NHC chelate with a benzyl–NHC chelate induced by one‐electron oxidation in the coordination sphere of a cobalt complex. The monoanionic CSiC ligand stabilizes the CoI dinitrogen complex [(CSiC)Co(N2)] with an unusual coordination geometry and enables the challenging oxidative addition of E−H bonds (E=C, N, O) to CoI to form CoIII complexes. The structure and reactivity of the cobalt(I) complex are ascribed to the unique electronic properties of the CSiC pincer ligand, which provides a strong trans effect and pronounced σ‐donation.  相似文献   

14.
N‐Heterocyclic carbene based pincer ligands bearing a central silyl donor, [CSiC], have been envisioned as a class of strongly σ‐donating ligands that can be used for synthesizing electron‐rich transition‐metal complexes for the activation of inert bonds. However, this type of pincer ligand and complexes thereof have remained elusive owing to their challenging synthesis. We herein describe the first synthesis of a CSiC pincer ligand scaffold through the coupling of a silyl–NHC chelate with a benzyl–NHC chelate induced by one‐electron oxidation in the coordination sphere of a cobalt complex. The monoanionic CSiC ligand stabilizes the CoI dinitrogen complex [(CSiC)Co(N2)] with an unusual coordination geometry and enables the challenging oxidative addition of E−H bonds (E=C, N, O) to CoI to form CoIII complexes. The structure and reactivity of the cobalt(I) complex are ascribed to the unique electronic properties of the CSiC pincer ligand, which provides a strong trans effect and pronounced σ‐donation.  相似文献   

15.
In the presence of added ligand, (PMe2Ph, PEt3, PMePh2 and PEt2Ph) the title compound undergoes ligand exchange and ring opening to give compounds of the type {L2Pt(CN)[OC(CN)C(CN)2]} having a trans configuration. A spectrophotometric kinetic study was carried out in CH2Cl2 and C2H5OH and the rate found to be proportional to the concentration of added phosphine. A linear relation between the second order rate constants and the cone angles of entering ligands points to the dominance of steric effects.  相似文献   

16.
The substitution of aqua ligands of mononuclear Pt(II) complexes of the general form [Pt(H(2)O)(N,N-bis(2-pyridylmethyl)-N(CH(2))(n)-CH(3); -NC(CH(3))(3); -NH](CF(3)SO(3))(2), n = 1 (bpea); 2 (bppa); 3 (bpba); 5 (bpha), 9 (bpda) -NC(CH(3))(3) (bpbta) and -NH (bpma) by thiourea nucleophiles was investigated under pseudo first-order conditions as a function of concentration and temperature using the stopped-flow technique and UV-vis spectroscopy. The substitution reactions occur via two separate reaction steps, each fitting to a single exponential curve. In the two reaction steps, the thiourea nucleophiles first substitute the coordinated aqua ligand followed by ring opening via dechelation of one of the pyridyl units. The mode of activation for both steps remains associative in nature and the observed rate constants can be fitted to the equation k(obs(1st/2nd)) = k(2(1st/2nd))[Nu]. Appending a primary alkyl hydrocarbon group on the trans-N donor atom of the chelate head group marginally increases the rate of substitution of the aqua leaving group due to the weaker trans-influence of its alkyl amine donor group. However, when a tert-butyl group is the pendant group, reactivity increases by a factor of about two, reiterating the inductive nature of the flow of electron density from the tailing groups towards the Pt(II) metal centres. A comparison of the reactivities of the studied complexes with their dinuclear analogues bridged by alkyl diamines has demonstrated that the electronic effect of the alkyl diamine bridge on the overall reactivity of the multinuclear Pt(II) complexes is weak and insignificant when compared to steric effects due to the constraining bridge.  相似文献   

17.
A series of mononuclear half‐sandwich cyclometallated iridium complexes with Schiff base ligands were synthesized in good yields. Five air‐stable C,N‐chelate mode complexes were obtained smoothly through metal‐mediated C─H bond activation. Treatments of dimeric metal complexes [Cp*IrCl2]2 with ligands L1–L5 afforded the corresponding C,N‐chelate mononuclear half‐sandwich iridium(III) complexes 1 – 5 . These iridium complexes exhibit high catalytic activity for norbornene polymerization. Both steric and electronic effects of the substituted groups have influences on the behaviors of the polymerization process. All complexes were characterized using infrared and NMR spectroscopies and elemental analysis. Molecular structures of complexes 1 , 2 and 5 were further confirmed using single‐crystal X‐ray analysis.  相似文献   

18.
Theoretical Investigations on the Charge Transfer of d6-Metal Complexes with Acceptor Ligands On the basis of the electronic structure of pentaammineruthenium(II) and pentacyanoferrate(II) complexes with aromatic N-heterocyclic ligands L the different tendency of the complex fragments to charge-transfer interactions with acceptor molecules is discussed. The increased energy and the reduced absorption intensity of the metal oxidation band of [Fe(CN)5L]3? are due to the diminished orbital interaction between the pentacyanoferrate(II) fragment and the nitrogen acceptor ligand caused by π-bonding interaction of the central metal with the cyanide co-ligands. The possibility of the variation of the energy of the acceptor levels connected with the position of the MLCT bands of the mixed-ligand complexes has been investigated by numerous azine and α-diimine ligands of different structure. Besides inductive and mesomeric effects the steric influences on the π-acceptor ability of the ligand and on the energy and absorption intensity of the MLCT band are examined.  相似文献   

19.
Kinetic studies were performed for the chelate ring closing and opening process of cyclopentadienyl cobalt(III) complexes having a pendant N-functional group with an amine, piperidine or pyridine moiety in the side chain. The metal-nitrogen bond energy was measured. The rate of chelation by such pendant N-functionalized side chains in diiodomonocarbonyl cobalt(III) reaction intermediates is determined by the electronic density on the donor atom and the strength of the forming chelated bond. The steric factor around the donor atom plays a secondary role. On the basis of the enthalpies and entropies obtained from the kinetic studies, the process of chelate ring closing in diiodomonocarbonyl cobalt(III) reaction intermediates is via an associative pathway involving loss of CO, while the chelate ring opening process in the resulted chelators is via a metal-nitrogen bond cleavage, solvation then metal-phosphorus bond formation pathway during substitution of PPh3. The chelator with the most rigid arm of picolyl shows a smallest steric hindrance for incoming PPh3 compared to the other two analogues.  相似文献   

20.
In order to find out whether metal type influences the stacking interactions of phenyl rings in square-planar complexes, geometrical parameters for Cu, Ni, Pd and Pt complexes, with and without chelate rings, were analyzed and compared. By searching the Cambridge Structural Database, 220 structures with Cu complexes, 211 with Ni complexes, 285 with Pd complexes, and 220 with Pt complexes were found. The results show that the chelate ring has a tendency to make the stacking interaction with the phenyl ring independent of metal type in the chelate ring. However, there are some differences among metals for complexes without a chelate ring. There are a number of structures containing Pd and Pt complexes, without chelate rings, that have short carbon-metal distances and parallel orientations of the phenyl ring with respect to the coordination plane. It was found that some of these complexes have a common fragment, CN, as a part of the ligands. This indicates that the CN supports stacking interactions of square planar complexes with the phenyl ring.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号