首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The magnetic and transport properties of La1−xCaxMnO3 (0≤x<0.4) have been systematically studied. The magnetoresistance (MR) maximum appears at x=0.2-0.25 and the temperature dependence of MR for x>0.25 shows a much broader profile than that of samples for x=0.2-0.25. Based on a scenario in which there is a short-range charge ordering (CO) state coexisting in the ferromagnetic state matrix for x>0.25, and the least or even no short-range CO state exists in samples for x=0.2-0.25, the above observations can be understood.  相似文献   

2.
3.
Electroresistance (ER) effects were investigated for a full series of manganite ceramics La1−xCaxMnO3 (0<x<1), synthesized by solid state reaction. The results indicate that while the ER effects are large only in the presence of electrically active, high E-field boundaries, the equilibrium or metastable electronic-magnetic states in the adjoining domains are also significant, as a large ER occurs only at x=0.51 and x=0.17; those compositions are both near a two-phase coexistence region, i.e. close to a compositional regime where equilibrium insulating/metallic phase domains and interfaces would occur spontaneously.  相似文献   

4.
Nanocrystalline La1−xBaxMnO3 (0.0≤x≤0.3) manganites have been prepared by a simple and instantaneous solution combustion method, which is a low temperature initiated synthetic route to obtain fine-grained powders with relatively high surface area. The phase purity and crystal structure of the combustion products are carried out by powder X-ray diffraction. The as-made nanopowders are in cubic phase. On calcination to 900 °C, barium doped manganites retain cubic phase, whereas barium free manganite transformed to rhombohedral phase. The scanning electron microscope (SEM) results revealed that the combustion-derived compounds are agglomerated with fine primary particles. The doped manganites have surface area in the range 24-44 m2/g. The surface area of the manganites increases with barium content, whereas it decreases on calcination. Both undoped and doped lanthanum manganites show two active IR vibrational modes at 400 and 600 cm−1. The low temperature resistivity measurements have been carried out by four-probe method down to 77 K. All the samples exhibit metal-insulator behaviour and metal-insulator transition temperature (TM-I) in the range 184-228 K and it is interesting to note that, as the barium content increases the TM-I shifts to lower temperature side. The maximum TM-I of 228 K is observed for La0.9Ba0.1MnO3 sample.  相似文献   

5.
With a view to understand the elastic behaviour of a material system, La0.67Sr0.33−xBaxMnO3 (where x=0, 0.1, 0.2, and 0.33) especially in the vicinity of their magnetic transition temperature TC, a systematic investigation of ultrasonic velocity over a temperature range 300-400 K has been carried out. The materials prepared by citrate gel route, were characterized structurally by XRD and on analyzing the XRD patterns, it has been concluded that all the samples are having rhombohedral structure with space group of R3?c. The magnetic (TC) transition temperatures determined by AC susceptibility measurements are found to decrease continuously with increasing barium concentration. Finally, the ultrasonic longitudinal velocities of all the samples are found to exhibit considerable softening in the vicinity of their magnetic transition temperatures, TC and the observed behaviour is explained using mean field theory and Jahn-Teller theorem.  相似文献   

6.
Ethylene glycol solutions of La-Mn(II) and La-Ca-Mn(II) citric complexes has been used as a starting material for spray-pyrolysis deposition of LaMnO3 and La1−xCaxMnO3 thin films on β-quartz, fused quartz, Si(0 0 1) and SrTiO3(1 0 0) substrates heated during the deposition at 380 °C. At suitable post-deposition heating conditions highly uniform films, 0.1-1 μm in thickness, with good crystal structure were obtained. Highly textured LaMnO3 films are obtained on SrTiO3(1 0 0) substrate. Interaction between the layer and Si-containing substrates is observed during the post-deposition heating in static air.  相似文献   

7.
The critical properties of perovskite manganite La0.67Pb0.33Mn1−xCoxO3 (0≤x≤0.08) around the paramagnetic-ferromagnetic phase transition are investigated through various techniques such as the modified Arrott plot, Kouvel-Fisher method and critical isotherm analysis. Though the nature of this transition was found to be in second order, the estimated critical exponents β (0.233≤β≤0.368), γ (1.03≤γ≤1.40) and δ (4.32≤δ≤5.54) are in between the theoretically predicted values for three-dimensional Heisenberg and tricritical mean-field model. This model suggests the coexistence of the short-range and long-range ferromagnetic orders around the critical temperature. The values of the critical exponents obtained from different methods and the well-obeyed scaling behavior confirm that the calculated exponents are unambiguous and purely intrinsic to the system.  相似文献   

8.
Structural, magnetic and magnetocaloric properties of manganites series with the AMn1−xGaxO3 (A=La0.75Ca0.08Sr0.17 and x=0, 0.05, 0.1 and 0.2) composition have been investigated to shed light on Ga-doping influence. Solid-state reaction method was used for preparation. From XRD study, all samples are found single phase and crystallize in the orthorhombic structure with the Pnma space group. The variation of the magnetization M vs. temperature T, under an applied magnetic field of 0.05 T, reveals a ferromagnetic–paramagnetic transition for all samples. The experimental results indicate that TC decreases from 336 to 135 K with increasing Ga substitution. Magnetocaloric effect (MCE) was estimated, in terms of isothermal magnetic entropy change (−ΔSM), using the M(T, μ0H) data and employing the thermodynamic Maxwell equation. The maximum entropy change and Relative Cooling Power (RCP) show non-monotonic behaviors with increasing the concentration of Gallium. In fact, the maximum value of ΔSMmaxof AMn1−xGaxO3 for x=0.00 and 0.2 samples is found to be, respectively, 2.87 and 1.17 J/kg/K under an applied magnetic field change of 2 T. For the same applied magnetic field (μ0H=2 T), the RCP values are found to vary between 97.58 and 89 J/kg.  相似文献   

9.
We report the resistivity (ρ)-temperature (T) patterns in (1-x)La0,7Ca0,3MnO3+xAl2O3 composites (0≤x≤0.05) over a temperature regime of 50-300 K. Al2O3 addition has increased the resistivity of these composites. The Curie temperature (TC) is almost independent on the Al2O3 content and is about 250 K for all the samples, while the metal-insulator transition temperature (TMI) decreases with increasing Al2O3 content. Based on the phenomenological equation for conductivity under a percolation approach, which is dependent on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions, we fitted the experimental data (ρT) from 50 to 300 K and find that the activation barrier increases as Al2O3 content increases.  相似文献   

10.
The author of the comment objects to the characterization and the interpretation of magnetoresistance (MR) effects observed by us in La1−xCaxMnO3 (0≤x<0.4) samples. In this reply, arguments are used to show that the samples' characterization and explanation of the MR by considering the role of the short-charge ordering (CO) regions and magnetic domains are reasonable and acceptable.  相似文献   

11.
The electronic structures of perovskite oxides La2/3Sr1/3MnO3 are studied with density functional methods. Our calculations indicated that the strong electron correlation, which has evident influence on the split of Mn 3d-orbitals and the forming of double exchange, is very important to get the correct densities of states (DOS) of La2/3Sr1/3MnO3. In addition, results show that 4.1 eV is a good choice for the on-site Coulomb parameter U.  相似文献   

12.
The effect of Te-doping at La-site on structural, magnetic and transport properties in the manganites La0.7Ca0.3−xTexMnO3 (0≤x≤0.15) has been investigated. All samples show an orthorhombic structure (O′-Pbnm) at room temperature. It shows that the Mn-O-Mn bond angle decreases and the Mn-O bond length increases with the increase in the Te content. All samples exhibit an insulator-metal (I-M) transition and the resistivity increases with the increase in the Te-doping level. Additionally, the Curie temperature Tc decreases and the transition becomes broader with increasing Te-doping level, in contrast, the magnetization of Te-doping samples at low temperatures decrease with increasing x as x≤0.10 and then increase with further increasing x to 0.15. The results are discussed in terms of Jahn-Teller (JT) vibrational anisotropy Q3/Q2 and the opening of the new DE channel between Mn2+-O-Mn3+ due to the introduction of Mn2+ ions because of the substitution of Te4+ ions for Ca2+ ions.  相似文献   

13.
We analyze the contribution of polaron hopping to the electron paramagnetic resonance linewidth in La1−xCaxMnO3 and related materials. The material is assumed to be in the paramagnetic phase and the conductivity is associated with the activated polaron hopping. It is also assumed that the adiabatic, small polaron picture is appropriate so that the conductivity varies as exp[−Ea/T]/T, where Ea denotes the polaron activation energy. The polaron contribution to the linewidth is given by the expression C[χ0(T)/χ(T)]exp[−Ea/T] where χ0(T) is the Curie susceptibility (∼1/T), χ(T) is the measured susceptibility and C is a material-dependent parameter. Various experimental studies reporting polaron contributions to the linewidth are discussed. It is pointed out that fitting the linewidth to the functional form ΔH0+(A/T)exp[−Ea/T] is not physically justified. In the high temperature–mean field regime, the exchange narrowed width, (1−Θ/T)k(∞), where Θ is the paramagnetic Curie temperature, replicates the exponential functional form with reasonable values for the activation energy. From previous measurements of the conductivity that showed activated polaron hopping as the leading transport mechanism, we concluded that the linewidth in La0.7Ca0.3MnO3 is a sum of exchange narrowing and one-phonon spin–lattice terms with no evidence of a contribution from polaron hopping or band transport as had been previously proposed. A similar conclusion is reached for La0.8Ca0.2MnO3, nanometer-sized La0.9Ca0.1MnO3, and La0.9Te0.1MnO3.  相似文献   

14.
We have synthesized several polycrystalline samples with nominal compositions La0.7Sr0.3−xHgxMnO3+δ (0≤x≤0.2) by the standard solid-state reaction method. Instead of the sealed quartz tube method widely employed for the Hg-based systems, we adopted open atmosphere synthesis route. All the samples exhibited monophasic nature with rhombohedral structure as revealed by the X-ray diffraction data. A variation in the unit cell volume is observed with x, which is interpreted as a result of extra oxygen in-diffusion and subsequent cation vacancy creation. A broad metallic behavior is seen in the entire temperature range from 300 to 4 K. The samples showed varying amount of colossal magnetoresistance depending upon the temperature and applied magnetic field. The MR value as high as 30% was observed in x=0.2 sample and the MR is persistent over a wide temperature range with a little change in magnitude.  相似文献   

15.
The effect of Te-doping at La-site on structural, magnetic and transport properties in the manganites La0.7Sr0.3−xTexMnO3 (0≤x≤0.15) has been investigated. All samples show a rhombohedral structure with the space group . It shows that the Mn-O-Mn bond angle decreases and the Mn-O bond length increases with the increase of Te content. The Curie temperature TC decreases with increasing Te-doping level, in contrast, the magnetization magnitude of Te-doping samples at low temperatures increase with increasing x as x≤0.05 and then decrease with further increasing x to 0.15. The results are discussed in terms of the combined effects of the opening of the new double exchange (DE) channel between Mn2+-O-Mn3+ due to the introduction of Mn2+ ions because of the substitution of Te4+ for Sr2+ and the reduction of the transfer integral b due to the decrease of the Mn-O-Mn bond angle.  相似文献   

16.
X-ray diffraction experiments have been combined with Raman scattering and transmission electron microscopy data to analyze the result of rapid thermal annealing (RTA) applied to Zr films, 16 or 80 nm thick, sputtered on Si1−xGex epilayers (0≤x≤1). The C49 Zr(Si1−xGex)2 is the unique phase obtained after complete reaction. ZrSi1−xGex is formed as an intermediate phase. The C49 formation temperature Tf is lowered by the addition of Ge in the structure. Above a critical Ge composition close to x=0.33, a film microstructure change was observed. Films annealed at temperatures close to Tf are continuous and relaxed. Annealing at T>Tf leads to discontinuous films: surface roughening resulting from SiGe diffusion at film grain boundaries occurred. Grains are ultimately partially embedded in a SiGe matrix. A reduction in the lattice parameters as well as a shift of Raman lines are observed as T exceeds Tf. Both Ge non-stoichiometry and residual stress have been considered as possible origins for these changes. However, as Ge segregation has never been detected, even by using very efficient techniques, it is thought that the changes originate merely from residual stress. The C49 grains are expected to be strained under the SiGe matrix effect and shift of the Raman lines would indicate the stress is compressive. Some simple evaluations of the stress values indicate that it varies between −0.3 and −3.5 GPa for 0≤x≤1 which corresponds to a strain in the range (−0.11, −1.15%). X-ray and Raman determinations are in good agreement.  相似文献   

17.
Lanthanum based mixed valence manganite system La1−xCax−0.08Sr0.04Ba0.04MnO3 (LCSBMO; x=0.15, 0.24 and 0.33) synthesized through the sol-gel route is systematically investigated in this paper. The electronic transport and magnetic susceptibility properties are analyzed and compared, apart from the study of unit cell structure, microstructure and composition. Second order phase transition is observed in all the samples and significant difference is observed between the insulator to metal transition temperature (TMI) and paramagnetic (PM) to ferromagnetic (FM) transition temperature (TC). In contrast to the insulating FM behaviour usually observed in La1−xCaxMnO3 (LCMO) for x=0.15, a clear insulator to metal transition is observed for LCSBMO for the same percentage of lanthanum. The temperature dependent resistivity of polycrystalline pellets, when obeying the well studied law ρ=ρo+ρ2T2 for T<TMI, is observed to differ significantly in the values of ρo and ρ2, with the electrical conductivity increasing with x. The variable range hopping model has been found to fit resistivity data better than the small polaron model for T>TMI. AC magnetic susceptibility study of the polycrystalline powders of the manganite system shows the highest PM to FM transition of 285 K for x=0.33.  相似文献   

18.
The effect of Ce-doping on structural, magnetic, electrical and thermal transport properties in hole-doped manganites La0.7−xCexCa0.3MnO3 (0.0≤x≤0.7) is investigated. The structure of the compounds was found to be crystallized into orthorhombically distorted perovskite structure. dc Susceptibility versus temperature curves reveal various magnetic transitions. For x≤0.3, ferromagnetic regions (FM) were identified and the magnetic transition temperature (TC) was found to be decreasing systematically with increasing Ce concentration. The electrical resistivity ρ(T) separates the well-define metal-semiconducting transition (TMS) for low Ce doping concentrations (0.0≤x≤0.3) consistent with magnetic transitions. For the samples with 0.4≤x≤0.7, ρ(T) curves display a semiconducting behavior in both the high temperature paramagnetic (PM) phase and low temperature FM or antiferromagnetic phase. The electron–phonon and electron–electron scattering processes govern the low temperature metallic behavior, whereas small polaron hopping model is found to be operative in PM phases for all samples. These results were broadly corroborated by thermal transport measurements for metallic samples (x≤0.3) in entire temperature range we investigated. The complicated temperature dependence of Seebeck coefficient (S) is an indication of electron–magnon scattering in the low temperature magnetically ordered regime. Specific heat measurements depict a broadened hump in the vicinity of TC, indicating the existence of magnetic ordering and magnetic inhomogeneity in the samples. The observation of a significant difference between ρ(T) and S(T) activation energies and a positive slope in thermal conductivity κ(T) implying that the conduction of charge carriers were dominated by small polaron in PM state of these manganites.  相似文献   

19.
The structural, magnetic and transport properties of La0.5Sr0.5MnO2.88 and La0.5Sr0.5Mn0.5Ti0.5O3 samples have been investigated systematically. Indeed, this series has been considered to understand the influence of physical parameters such as oxygen deficiency and titanium doping effect in undoped La0.5Sr0.5MnO3 sample. Ceramic material based on La0.5Sr0.5MnO2.88 exhibits interesting behaviours of charge-ordering (CO), ferromagnetic (FM) states and a good conductivity down to the lowest temperatures. The substitution of Ti for Mn destroyed drastically the CO, damaged the motion of itinerant eg electrons and changed the local parameters of perovskite cell. A change of the structure from tetragonal to rhombohedral symmetry is observed causing a weakening of double-exchange interaction. The experiment results show that the suppression of the CO is sensitive to the variety of Mn3+/Mn4+ ratio. In a field of 8 T at 10 K, FM and CO phase can be evaluated to be ∼20:80 according to the μexpcal ratio for La0.5Sr0.5MnO2.88, whereas the CO state is suppressed for La0.5Sr0.5Mn0.5Ti0.5O3 sample, FM and anti-ferromagnetic (AFM) phase are coexisted and evaluated to be ∼54:46, respectively.  相似文献   

20.
The structural properties of Prx1?xCaxMnO3 and Y1?xCaxMnO3 perovskite systems were studied by X-ray and magnetic susceptibility measurements. The differences in the structural properties of both systems are attributed to the differences of tolerance factors, i.e. of ionic radii of the ions present and the results are interpreted as being due to simultaneous action of steric effect, orbit-lattice interactions of Mn3+ ions and Coulomb interactions among 3d electrons. Their individual contributions depending on the compositions are analyzed. Besides the usual cooperative Jahn-Teller effect existing in PrMnO3 a new type of transformation was found which is connected, under condition of Mn3+ ? Mn4+ valency migration, with the formation of local Jahn-Teller distortions. It is characterized by the equality of vhop and vphon at a critical temperature Tcrit; it has been found that Tcrit depends only very weakly on the composition. A correpsonding O'→O change in the yttrium system is, however, rather continuous which is explained by a strong influence of the cooperative buckling effect. An analysis of the magnetic data points to the presence of double exchange in the praseodymium system at high temperatures, while at low temperatures this mechanism applies only in the region, where cooperative Jahn-Teller effect exists, i.e. at x0.4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号