首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preparation and characterization of CdS/Si coaxial nanowires   总被引:1,自引:0,他引:1  
CdS/Si coaxial nanowires were fabricated via a simple one-step thermal evaporation of CdS powder in mass scale. Their crystallinities, general morphologies and detailed microstructures were characterized by using X-ray diffraction, scanning electron microscope, transmission electron microscope and Raman spectra. The CdS core crystallizes in a hexagonal wurtzite structure with lattice constants of a=0.4140 nm and c=0.6719 nm, and the Si shell is amorphous. Five Raman peaks from the CdS core were observed. They are 1LO at 305 cm−1, 2LO at 601 cm−1, A1-TO at 212 cm−1, E1-TO at 234 cm−1, and E2 at 252 cm−1. Photoluminescence measurements show that the nanowires have two emission bands around 510 and 590 nm, which originate from the intrinsic transitions of CdS cores and the amorphous Si shells, respectively.  相似文献   

2.
We report photoluminescence (PL) and reflectivity measurements of Zn0.5Cd0.5Se epilayers grown by molecular beam epitaxy on InP substrates. The low-temperature PL spectra are dominated by asymmetric lines, which can be deconvoluted into two Gaussian peaks with a separation of ∼8 meV. The behavior of these peaks is studied as a function of excitation intensity and temperature, revealing that these are free exciton (FE) and bound exciton emission lines. Two lower energy emission lines are also observed and assigned to the first and second longitudinal optical phonon replicas of the FE emission. The temperature dependence of the intensity, line width, and energy of the dominant emission lines are described by an Arrhenius plot, a Bose-Einstein type relationship, Varshni's and Bose-Einstein equations, respectively.  相似文献   

3.
The Cu-doped ZnO films were prepared by direct current reactive magnetron sputtering using a zinc target with various Cu-chips attached. The influences of Cu-doping on the microstructure, photoluminescence, and Raman scattering of ZnO films were systematically investigated. The results indicate that ZnO films doped with moderate Cu dopant (2.0-4.4 at.%) can obtain wurtzite structure with strong c-axis orientation. The near band edge (NBE) emission of ZnO film can be enhanced by Cu dopant with a concentration of 2.0 at.% and quench quickly with further increase of doping concentration. Two additional modes at about 230 and 575 cm−1, which could be induced by Cu dopant, can be observed in Raman spectra of the Cu-doped ZnO films.  相似文献   

4.
The composition and size of optically active CdxZn1−xSe/ZnSe quantum dots are estimated with a previously developed method. The results are then compared with those obtained for CdxZn1−xSe/Zn0.97Be0.03Se QDs. We show that introducing Be into the barrier material enhances both Cd composition and quantum size effect of optically active quantum dots.  相似文献   

5.
Undoped ZnO and Zn0.9Cr0.1O films were prepared on Al2O3 (0 0 0 1) substrates using the magnetron co-sputtering technique. X-ray diffraction scans show that all films exhibit nearly single-phase wurtzite structure with c-axis orientation. Both chromium doping and growth ambient have a significant impact on the lattice constants and nucleation processes in ZnO film. A large quantity of subgrains (10 nm in size) has been observed on Zn0.9Cr0.1O film grown under Ar + O2, while irregular plateau-like grains 40-50 nm in size were observed on Zn0.9Cr0.1O film grown under Ar + N2. The ultraviolet-visible transmittance and optical bandgap of all films were also examined. The photoluminescence spectra of all films exhibit a broad emission located around 400 nm, which is composed of one weak ultraviolet luminescence and another rather intense near-violet one, as determined by Gaussian peak fitting. The near-violet emission centered on 400 nm might originate from the electron transition between the band tail state levels of surface defects and/or lattice imperfection in the ZnO film.  相似文献   

6.
In-N codoped ZnMgO films have been prepared on glass substrates by direct current reactive magnetron sputtering. The p-type conduction could be obtained in ZnMgO films by adjusting the N2O partial pressures. The lowest resistivity was found to be 4.6 Ω cm for the p-type ZnMgO film deposited under an optimized N2O partial pressure of 2.3 mTorr, with a Hall mobility of 1.4 cm2/V s and a hole concentration of 9.6 × 1017 cm−3 at room temperature. The films were of good crystal quality with a high c-axis orientation of wurtzite ZnO structure. The presence of In-N bonds was identified by X-ray photoelectron spectroscopy, which may enhance the nitrogen incorporation and respond for the realization of good p-type behavior in In-N codoped ZnMgO films. Furthermore, the ZnMgO-based p-n homojunction was fabricated by deposition of an In-doped n-type ZnMgO layer on an In-N codoped p-type ZnMgO layer. The p-n homostructural diode exhibits electrical rectification behavior of a typical p-n junction.  相似文献   

7.
ZnSe/CdSe/ZnSe structures inserted CdSe thin layer are fabricated using an alternate molecular beam supply (ALS). Examining the PL peak energy dependence on beam irradiation time in ALS cycle, we studied the initial stage of CdSe growth. When CdSe below the critical thickness is supplied on ZnSe grown on GaAs (1 0 0), two kinds of 2D islands (platelets) appear. We confirmed the alloying of 2D-CdSe islands and 3D-CdSe islands (dots) is prominent under Cd beam irradiation in ALS growth.  相似文献   

8.
Near-infrared luminescence is observed from bismuth-doped GeS2-Ga2Sa chalcogenide glasses excited by an 808 nm laser diode. The emission peak with a maximum at about 1260 nm is observed in 80GeS2-2OGa2 Sa:O.fBi glass and it shifts toward the long wavelength with the addition of Bi gradually. The full width of half maximum (FWHM) is about 200 nm. The broadband infrared luminescence of Bi-doped GeS2-Ga2Sa chalcogenide glasses may be predominantly originated from the low valence state of Bi, such as Bi+. Raman scattering is also conducted to claxify the structure of glasses. These Bi-doped GeS2 Ga2Sa chalcogenide glasses can be applied potentially in novel broadband optical fibre amplifiers and broadly tunable laser in optical communication system.  相似文献   

9.
Mn-doped ZnO nanorods were synthesized from aqueous solutions of zinc nitrate hexahydrate, manganese nitrate and methenamine by the chemical solution deposition method (CBD). Their microstructures, morphologies and optical properties were studied in detail. X-ray diffraction (XRD) results illustrated that all the diffraction peaks can be indexed to ZnO with the hexagonal wurtzite structure. Scanning electron microscope (SEM) results showed that the average diameter of Mn-doped ZnO nanorods was larger than that of the undoped one. Photoluminescence (PL) spectra indicated that manganese doping suppressed the emission intensity and caused the blue shift of UV emission position compared with the undoped ZnO nanorods. In the Raman spectrum of Mn-doped ZnO nanorods, an additional mode at about 525 cm−1 appeared which was significantly enhanced and broadened with the increase of Mn doping concentration.  相似文献   

10.
ZnS films are deposited by pulsed laser deposition on porous silicon (PS) substrates formed by electrochemical anodization of p-type (100) silicon wafer. Scanning electron microscope images reveal that the surface of ZnS films is unsmoothed, and there are some cracks in the ZnS films due to the roughness of the PS surface. The x-ray diffraction patterns show that the ZnS films on PS surface are grown in preferring orientation along cubic phase β-ZnS (111) direction. White light emission is obtained by combining the blue-green emission from ZnS films with the orange-red emission from PS layers. Based on the I-V characteristic, the ZnS/PS heterojunction exhibits the rectifying junction behaviour, and an ideality factor n is calculated to be 77 from the I-V plot.  相似文献   

11.
ZnO:N thin films have been deposited on oxygen and zinc terminated polar surfaces of ZnO. The nitrogen incorporation in the epilayers, using NH3 as doping source, was investigated as a function of the growth temperature in the range between 380 °C and 580 °C. We used Raman spectroscopy and low temperature photoluminescence to investigate the doping properties. It turned out that the nitrogen incorporation strongly depends on both, the surface polarity of the epitaxial films and the applied growth temperatures. In our CVD process low growth temperatures and Zn‐terminated substrate surfaces clearly favour the nitrogen incorporation in the ZnO thin films. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Centimeter‐scale assemblies of highly ordered CdSe/CdS core‐shell nanorods have been successfully fabricated by infiltration of the nanorods into the pores of a transparent porous anodic alumina membrane. The high degree of the nanorod ordering is proved by the demonstration of both highly polarized PL and absorption of the aligned nanorods. The measured PL linear polarization degree is 53%. We have found that both the elongated CdS shell and the nearly spherical CdSe core exhibit a strong dependence of absorption on polarization angle with respect to the nanorod axis. We conclude that both CdS shell and CdSe core absorb more efficiently light with polarization along the axis of the nanorod. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We report on dynamics of excitons in CdxZn1−xTe/ZnTe quantum dots (QDs) and present information of excitonic transport and recombination. Due to different growth methods, samples with different QD's densities were obtained. Time-resolved measurements reveal three decay mechanisms: (i) radiative recombination of excitons in the individual QDs; (ii) thermally activated escape of excitons and (iii) escape due to tunneling (hopping). In the high QD-density samples the hopping (rHB=2700 ns−1) is two orders of magnitude more efficient than in the low QD-density samples (rHB=33 ns−1). Radiative recombination rates are similar in both types of samples, rR=1-1.3 ns−1. Due to the good radiative to nonradiative recombination ratio, the low-density QDs can be a potential source of entangled photon pairs.  相似文献   

14.
A new structure of GaAs photocathode was introduced. The Be-doping concentration is variable in the new structure compared with the constant concentration of Be in the normal photocathode. Negative electron affinity GaAs photocathodes were fabricated by alternate input of Cs and O. The spectral response results measured by the on-line spectral response measurement system show that the integrated photosensitivity of the photocathodes with the new structure is enhanced by at least 50% as compared to those with the monolayer structure. Accordingly, two main factors leading to the enhanced photosensitivity of the photocathodes were discussed.  相似文献   

15.
A novel and simple synthesis route for the production of ZnS:Cu,Al sub-micron phosphor powder is reported. Both the host and activator cations were co-precipitated from an ethanol medium by mixing with a diluted ammonium sulfide solution. The co-precipitated ZnS:Cu,Al was in cubic zinc blende structure after an intermediate-temperature furnace annealing. Strong photoluminescent and cathodoluminescent (CL) emission were observed, which was attributed to the 3d10-3d94s1 radiative transition at those copper sites. At an accelerating voltage of 1 kV, the CL intensity of the co-precipitated ZnS:Cu,Al sample was recorded 94% of the commercial reference phosphor with the same composition made by high temperature solid-state-reaction method. The particle size of the co-precipitated phosphor powders was found to be controllable simply through adjusting the reactant concentrations. The particle size of the annealed samples was measured by dynamic light scattering, which showed a mean particle diameter between 200 and 700 nm depending on the co-precipitation conditions.  相似文献   

16.
We have investigated temporal behavior of the photoluminescence (PL) spectra of thin films containing CdSe/ZnS quantum dots irradiated by 532 nm laser radiation and gamma-rays. Under ∼100 W/cm2 laser radiation, the PL intensity (IPL) increases with irradiation time upto about 500 s and thereafter declines linearly. The wavelength of the PL emission (λpeak) exhibits a blue-shift with exposure time. Upon simultaneous irradiation by 100 W/cm2 532-nm laser, as well as 0.57 and 1.06 MeV gamma-rays, the temporal behaviors of both IPL and λpeak are significantly different; IPL increases to a saturation level, and the magnitude of the blue-shift in λpeak is reduced. We discuss possible mechanisms underlying these results.  相似文献   

17.
Pulsed electrodeposited technique is applied to fabricate ZnTe nanowire arrays with different diameters into the anodic alumina membrane in citric acid solution. The x-ray powder diffraction, scanning electron microscopy and transmission electron microscopy indicate that the high ordered, uniform and single-crystalline nanowires have been fabricated. The optical absorption spectra of the nanowire array show that the optical absorption band edge of the ZnTe nanowire array exhibit a blue shift compared with that of bulk ZnTe, and the nonlinear current-voltage characteristic is observed.  相似文献   

18.
ZnO nanospheres were synthesized by a wet-chemical method. X-ray diffraction and field-emission scanning electron microscopy confirmed the formation of wurtzite-structured ZnO with regular sphere shape. Two Raman modes located at 333 cm−1 and 437 cm−1 with two additional Raman humps centered at 577 cm−1 and 1077 cm−1 were observed. Photoluminescence spectra showed ultraviolet, green, orange and red emissions, which changed significantly after the samples were annealed in air, oxygen, argon and forming gas four different ambiences. All the evidence indicates that surface states are responsible to orange and red emissions in addition to excitonic recombination (3.18 eV) and oxygen vacancy (2.25 eV) emission.  相似文献   

19.
Effect of water vapor quantity at oxidation of undoped ZnS films on structural and luminescent properties of the obtained films was investigated. The films were deposited onto glass substrates by electron beam evaporation. ZnO-ZnS layers were prepared by thermal oxidization of ZnS films at 600 °C in dry or wet atmospheres. The films were characterized by X-ray diffraction, atomic force microscopy and photoluminescence spectroscopy. As-deposited ZnS films were sphalerite crystal structure. The “dry annealing” led to the ZnS phase transition from sphalerite to wurtzite structure and from ZnS to ZnO for a small fraction of the film. After the “wet annealing” the amount of ZnO phase with wurtzite structure growing along the 〈0 0 0 2〉 direction varied from 25% to 95% in dependence on the water vapor quantity. Photoluminescent spectrum at room temperature exhibits green emission with maximum at 2.4 eV. A strong influence of the water vapor on shape and intensity of the emission was observed. Photoluminescent spectra at 22 K consisted of two bands—high-energy band at 2.1-2.4 eV and low energy band at 1.7-1.8 eV. Location and intensity ratio depended on the preparation conditions.  相似文献   

20.
HfxZn1−xO thin films (x=3, 7, 10 and 15 mol%) were deposited on Si (1 0 0) using pulsed laser deposition. The influence of the Hf concentration on the microstructure and optical properties of the films was studied. It is found that Hf ions can be effectively doped into ZnO and all films crystallize in the hexagonal wurtzite structure with a preferred c-axis orientation. The lattice constants of HfxZn1−xO films increase with the Hf contents. Two ultraviolet peaks centered at about 364 and 380 nm coexist in the fluorescent spectra. With increasing the Hf contents, the intensity of fluorescent peaks enhances remarkably. At the same time the energy gaps gradually increase, while the positions of ultraviolet peaks remain unchanged. The mechanism of luminescent emission for HfxZn1−xO films was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号