首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper-doped ZnO (ZnO:Cu) films exhibiting room-temperature (RT) ferromagnetism were prepared by filtered cathodic vacuum arc (FCVA) technique. The ZnO:Cu films deposited at RT showed the strongest magnetic moment of 0.40 μB/Cu as compared with the samples prepared at elevated temperatures. The observed strong ferromagnetism in the RT-deposited ZnO:Cu films could be partly associated with Zn-interstitial defects. The degradation of magnetic moment in the ZnO:Cu prepared at high temperatures and annealed at elevated temperatures might be attributed to the out-diffusion of Zn interstitials to the ZnO lattice.  相似文献   

2.
We report on the defects related room temperature ferromagnetic characteristics of Zn0.95-xMnxLi0.05O (x = 0.01, 0.03, 0.05 and 0.08) thin films grown on glass substrates using reactive magnetron sputtering. By increasing the Mn content, the films exhibited increases in the c-axis lattice constant, fundamental band gap energy, coercive field and remanent magnetization. Comparison of the structural and magnetic properties of the as-deposited and annealed films indicates that the hole carriers, together with defects concentrations, play an important role in the ferromagnetic origin of Mn and Li co-doped ZnO thin films. The ferromagnetism in films can be described by bound magnetic polaron models with respect to defect-bound carriers.  相似文献   

3.
The structural, magnetic and optical properties of (ZnO)1−x(MnO2)x (with x = 0.03 and 0.05) thin films deposited by pulsed laser deposition (PLD) were studied. The pellets used as target, sintered at different temperatures ranging from 500 °C to 900 °C, were prepared by conventional solid state method using ZnO and MnO2 powders. The observation of non-monotonic shift in peak position of most preferred (1 0 1) ZnO diffraction plane in XRD spectra of pellets confirmed the substitution of Mn ions in ZnO lattice of the sintered targets. The as-deposited thin film samples are found to be polycrystalline with the preferred orientation mostly along (1 1 0) diffraction plane. The UV-vis spectroscopy of the thin films revealed that the energy band gap exhibit blue shift with increasing Mn content which could be attributed to Burstein-Moss shift caused by Mn doping of the ZnO. The deposited thin films exhibit room temperature ferromagnetism having effective magnetic moment per Mn atom in the range of 0.9-1.4μB for both compositions.  相似文献   

4.
X.J. Liu 《Applied Surface Science》2008,254(10):3167-3174
Dilute (3.8 at.%) cobalt-doped ZnO thin films are deposited on LiTaO3 (LT) substrates with three different orientations [LT(1 1 0), LT(0 1 2) and LT(0 1 8)] by direct current reactive magnetron co-sputtering. The experimental results indicate that Co atoms with 2+ chemical valence are successfully incorporated into the ZnO host matrix on various oriented substrates, and the substrate orientations have a profound influence on the crystal growth and magnetization of Co:ZnO films. A large magnetic moment of 2.42μB/Co at room temperature is obtained in the film deposited on LT(0 1 2), while the corresponding values of the other films deposited on LT(1 1 0) and LT(0 1 8) are 1.21μB/Co and 0.65μB/Co, respectively. Furthermore, the crystal growth mode of Co:ZnO films on various oriented LT, the relationship between the microstructures and corresponding ferromagnetic properties are also discussed.  相似文献   

5.
Magnetic oxide semiconductors, for example the highly transparent and intrinsically n-type conducting zinc oxide doped with the 3d transition metal Co (ZnO:Co), are promising for the emerging field of spintronics [1]. We investigated n-conducting ZnO:Co thin films with a Co content of nominal 0.02, 0.20, or 2.00 at. %. The substitution of Co cations in the tetrahedral sites of wurtzite ZnO with Zn was confirmed at low temperature by the 1.877 eV photoluminescence between crystal field split d-levels of Co2+ (d7) ions. Based on theoretical studies, it is predicted that the formation of electron levels with zinc interstitials (IZn) or hole levels with zinc vacancies (VZn) is necessary to induce ferromagnetism, whereas the formation of electron levels with oxygen vacancies (VO) is detrimental for ferromagnetism in ZnO:Co [2]. Cobalt generates a hole level in ZnO [3]. We investigated the generation of electron levels in n-conducting ZnO:Co in dependence on the Co content by means of deep level transient spectroscopy (DLTS). However, because of the ambiguous categorization of deep defects in n-conducting ZnO (VO, IZn), an optimization of defect-related ferromagnetism in ZnO:Co is not possible at the moment. PACS 78.30.Fs; 91.60.Ed; 91.60.Mk  相似文献   

6.
Ge1−xMnx (x = 0, 0.013, 0.0226, 0.0339, 0.0565, 0.0678, 0.0904, 0.113) films prepared by magnetron sputtering at 773 K had a Ge cubic structure except for x = 0.1130. Co ion implantation into these films can effectively prevent the formation of a second phase. Both single-doped and co-doped samples were ferromagnetic at room temperature. The d-d exchange interaction between the interstitial Mn (MnT) and the substituted Mn (MnGe) resulted in ferromagnetism in the sputtered films. Since Co ion implantation destroyed the MnT-MnGe-MnT complex, the saturated magnetization decreased. Hall measurements revealed that the Co ion implanted films were n-type semiconductors, and the anomalous Hall Effect (AHE) suggested the ferromagnetism was carrier-mediated in the implanted films.  相似文献   

7.
Morphology and magnetic properties of Co/Si(1 1 1) interfaces have been investigated using scanning tunneling microscope and surface magneto-optic Kerr effect techniques. As deposited at room temperature for Co/Si(1 1 1), defects have been observed with shapes of dark patches and bright islands on the surface with different Co coverage. The defect formation causes a rough interface. For subsequently deposited Co layers, the interfacial state between Co and the Si substrate results in the appearance of both the longitudinal and polar Kerr loops. After annealing treatments, interdiffusion of Co atoms and Si(1 1 1) substrate occurs as revealed by Auger electron spectroscopy. Scanning tunneling microscope images show the formation of Si clusters with average diameter of 10 nm at high temperatures. The disappearance of ferromagnetism of the films occurs due to the structural and compositional changes.  相似文献   

8.
We have used oxygen plasma assisted metal organic chemical vapor deposition along with wet chemical synthesis and spin coating to prepare CoxZn1-xO and MnxZn1-xO epitaxial and nanoparticle films. Co(II) and Mn(II) substitute for Zn(II) in the wurtzite lattice in materials synthesized by both methods. Room-temperature ferromagnetism in epitaxial Co:ZnO films can be reversibly activated by diffusing in Zn, which occupies interstitial sites and makes the material n-type. O-capped Co:ZnO nanoparticles, which are paramagnetic as grown, become ferromagnetic upon being spin coated in air at elevated temperature. Likewise, spin-coated N-capped Mn:ZnO nanoparticle films also exhibit room-temperature ferromagnetism. However, the inverse systems, N-capped Co:ZnO and O-capped Mn:ZnO, are entirely paramagnetic when spin coated into films in the same way. Analysis of optical absorption spectra reveals that the resonances Co(I)↔Co(II)+e- CB and Mn(III)↔Mn(II)+h+ VB are energetically favorable, consistent with strong hybridization of Co (Mn) with the conduction (valence) band of ZnO. In contrast, the resonances Mn(I)↔Mn(II)+e- CB and Co(III)↔Co(II)+h+ VB are not energetically favorable. These results strongly suggest that the observed ferromagnetism in Co:ZnO (Mn:ZnO) is mediated by electrons (holes). PACS 75.50.Pp  相似文献   

9.
We report synthesis of a transparent magnetic semiconductor by incorporating Ni in zinc oxide (ZnO) matrix. ZnO and nickel-doped zinc oxide (ZnO:Ni) thin films (∼60 nm) are prepared by fast atom beam (FAB) sputtering. Both undoped and doped films show the presence of ZnO phase only. The Ni concentration (in at%) as determined by energy dispersive X-ray (EDX) technique is ∼12±2%. Magnetisation measurement using a SQUID magnetometer shows that the Ni-doped films are ferromagnetic, having coercivity (Hc) values 192, 310 and 100 Oe and saturation magnetization (Ms) values of 6.22, 5.32 and 4.73 emu/g at 5, 15 and 300 K, respectively. The Ni-doped film is transparent (>80%) across visible wavelength range. Resistivity of the ZnO:Ni film is ∼2.5×10−3 Ω cm, which is almost two orders of magnitude lower than the resistivity (∼4.5×10−1 Ω cm) of its undoped counterpart. Impurity d-band splitting is considered to be the cause of increase in conductivity. Interaction between free charges generated by doping and localized d spins of Ni is discussed as the reason for ferromagnetism in the ZnO:Ni film.  相似文献   

10.
Microstructure, magnetic and optical properties of polycrystalline Fe-doped ZnO films fabricated by cosputtering with different Fe atomic fractions (xFe) have been examined systematically. Fe addition could affect the growth of ZnO grains and surface morphology of the films. As xFe is larger than 7.0%, ZnFe2O4 grains appear in the films. All the films are ferromagnetic. The ferromagnetism comes from the ferromagnetic interaction activated by defects between the Fe ions that replace Zn ions. The average moment per Fe ion reaches a maximum value of 1.61 μB at xFe = 4.8%. With further increase in xFe, the average moment per Fe ion decreases because the antiferromagnetic energy is lower than the ferromagnetic one due to the reduced distance between the adjacent Fe ions. The optical band gap value decreases from 3.245 to 3.010 eV as xFe increases from 0% to 10%. Photoluminescence spectra analyses indicate that many defects that affect the optical and magnetic properties exist in the films.  相似文献   

11.
Al-doped ZnO (ZnO:Al) thin films with different Al contents were deposited on Si substrates using the radio frequency reactive magnetron sputtering technique. X-ray diffraction (XRD) measurements showed that the crystallinity of the films was promoted by appropriate Al content (0.75 wt.%). Then the ZnO:Al film with Al content of 0.75 wt.% was annealed in vacuum at different temperatures. XRD patterns revealed that the residual compressive stress decreased at higher annealing temperatures. While the surface roughness of the ZnO:Al film annealed at 300 °C became smoother, those of the ZnO:Al films annealed at 600 and 750 °C became rougher. The photoluminescence (PL) measurements at room temperature revealed a violet, two blue and a green emission. The origin of these emissions was discussed and the mechanism of violet and blue emission of ZnO:Al thin films were suggested. We concluded that the defect centers are mainly ascribed to antisite oxygen and interstitial Zn in annealed (in vacuum) ZnO:Al films.  相似文献   

12.
High quality Mn doped ZnO thin films were grown on c-plane Al2O3 by oxygen plasma assisted molecular beam epitaxy. Photoluminescence spectra were investigated on the ferromagnetic ZnMnO films. An additional emission located at ∼3.32 eV was observed on these ferromagnetic films for both as-grown and oxygen-annealed samples. It is assigned to the recombination of neutral acceptor bound excitons. The ionization energy of the acceptor was estimated to be 53–80 meV. The observed ferromagnetism was explained to relate with acceptor-type defects.  相似文献   

13.
Nanocrystalline Tb doped ZnO films have been prepared by ion-beam sputtering technology. Magnetic property shows that the films are ferromagnetic and the Curie Temperature (Tc) is over room temperature. Structure property investigation indicates that no secondary phase is found in all the films, which suggests that the ferromagnetism is caused by the incorporation of Tb into ZnO lattice. The saturation magnetization of the films are about 0.38 μb/Tb. Electrical property investigation proves that the carriers of the films are strongly localized, which suggests that the ferromagnetism in the film may be caused by the defects in the films.  相似文献   

14.
The importance of doping ZnO with magnetic ions is associated with the fact that this oxide is a good candidate for the formation of a magnetic-diluted semiconductor. Most of the studies reported in Co-doped ZnO were carried out in thin films, but the understanding of the modification of the magnetic behaviour due to doping demands the study of single-crystalline samples. In this work, ZnO single crystals were doped at room temperature with Co by ion implantation with fluences ranging between 2×1016 and 1×1017 ions cm−2 and implantation energy of 100 keV. As implanted samples show a superparamagnetic behaviour attributed to the formation of Co clusters, room temperature ferromagnetism is attained after annealing at 800 °C, but no magnetoresistance was detected in the temperature range from 10 to 300 K.  相似文献   

15.
Diluted magnetic nonpolar GaN:Mn films have been fabricated by implanting Mn ions into nonpolar a-plane () p-type GaN films and a subsequent rapid thermal annealing process. The ferromagnetism properties of the films were studied by means of superconducting quantum interference device (SQUID). Clearly in-plane magnetic anisotropy characteristics of the sample at 10 K were revealed with the direction of the applied magnetic field rotating along the in-plane [0 0 0 1]-axis. Moreover, obvious ferromagnetic properties of the sample up to 350 K were detected by means of the temperature-dependent SQUID.  相似文献   

16.
Nanostructured titanium dioxide (ns-TiO2) films were grown by supersonic cluster beam deposition method. Transmission electron microscopy demonstrated that films are mainly composed by TiO2 nanocrystals embedded in an amorphous TiO2 phase while their electronic structure was studied by photoemission spectroscopy. The cluster assembled ns-TiO2 films are expected to exhibit several structural and chemical defects owing to the large surface to volume ratio of the deposited clusters. Ultraviolet photoemission spectra (hv = 50 eV) from the valence band unveil the presence of a restrained amount of surface Ti 3d defect states in the band gap, whereas Ti 2p core level X-ray photoelectron (hv = 630 eV) spectra do not manifestly disclose these defects.  相似文献   

17.
Zn1−xCoxO (0 ≤ x ≤ 0.15) thin films grown on Si (1 0 0) substrates were prepared by a sol-gel technique. The effects of Co doped on the structural, optical properties and surface chemical valence states of the Zn1−xCoxO (0 ≤ x ≤ 0.15) films were investigated by X-ray diffraction (XRD), ultraviolet-visible spectrometer and X-ray photoelectron spectroscopy (XPS). XRD results show that the Zn1−xCoxO films retained a hexagonal crystal structure of ZnO with better c-axis preferred orientation compared to the undoped ZnO films. The optical absorption spectra suggest that the optical band-gap of the Zn1−xCoxO thin films varied from 3.26 to 2.79 eV with increasing Co content from x = 0 to x = 0.15. XPS studies show the possible oxidation states of Co in Zn1−xCoxO (0 ≤ x ≤ 0.05), Zn0.90Co0.10O and Zn0.85Co0.15O are CoO, Co3O4 and Co2O3, with an increase of Co content, respectively.  相似文献   

18.
Transparent conductive Co-doped ZnO thin films were deposited by ultrasonic spray technique. Conditions of preparation have been optimized to get good quality. A set of cobalt (Co)-doped ZnO (between 0 and 3 wt%) thin films were grown on glass substrate at 350 °C. The thin films were annealed at 500 °C for improvement of the physical properties. Nanocrystalline films with hexagonal wurtzite structure and a strong (0 0 2) preferred orientation were obtained. The maximum value of grain size G = 63.99 nm is attained with undoped ZnO film. The optical transmissions spectra showed that both the undoped and doped ZnO films have transparency within the visible wavelength region. The band gap energy decreased after doping from 3.367 to 3.319 eV when Co concentration increased from 0 to 2 wt% with slight increase of electrical conductivity of the films from 7.71 to 8.33 (Ω cm)−1. The best estimated structure, optical and electrical results are achieved in Co-doped ZnO film with 2 wt%.  相似文献   

19.
We report on the observation of room-temperature ferromagnetism in epitaxial (Zn,Mn)O films grown by a pulsed-laser deposition technique using high-density targets. The X-ray, microscopic, spectroscopic and magnetic properties of target material containing 6 at.% of Mn and films were compared. The target shows the presence of large clusters exhibiting paramagnetic behavior. However, ferromagnetic properties were observed in (Zn,Mn)O films grown at a substrate temperature of 500 °C and with an oxygen partial pressure of 1 mTorr. Although, crystalline quality of the film improves with increasing substrate temperature, the ferromagnetism becomes weaker.  相似文献   

20.
ZnO films are hydrothermally grown on ZnO-buffered c-plane sapphire substrates at a low temperature of 70 °C. A radio-frequency (RF) reactive magnetron sputtering has been used to grow the ZnO buffer layers. X-ray diffraction, scanning electron microscopy, and room temperature photoluminescence are carried out to characterize the structure, morphology and optical property of the films. It is found that the films are stress-free. The epitaxial relationship between the ZnO film and the c-plane sapphire substrate is found to be ZnO (0 0 0 1)||Al2O3 (0 0 0 1) in the surface normal and in plane. Sapphire treatment, as such acid etching, nitridation, and oxidation are found to influence the nucleation of the film growth, and the buffer layers determine the crystalline quality of the ZnO films. The maximum PL quantum efficiency of ZnO films grown with hydrothermal method is found to be about 80% of single-crystal ZnO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号