首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
采用原位生长NiS的泡沫镍NiS@Ni(NNF)和铜箔分别作为硫@微孔碳(S@MC)正极材料的集流体, 0.4 mol/L(PhMgCl)2-AlCl3+1.0 mol/L LiCl “二代镁锂混合”作为电解液, 测试了镁硫电池恒电流和不同倍率下的充放电性能, 分析了2种不同的集流体在涂覆相同正极材料下对镁硫电池性能影响的原因. 研究发现, 采用铜箔集流体的镁硫电池循环后正极极片上观察到明显的裂缝, 镁负极表面有分布不均匀的附着物, 硫含量略高. 采用NNF为集流体时, 由于泡沫镍具有缓冲硫正极体积变化的孔道结构, 正极极片能基本保持原本的形貌; 特别是在NNF上原位生长的NiS可电催化加速多硫化物中间体的转化, 减少多硫化物的生成并减缓其穿梭, 不干扰镁负极上发生的电化学反应, 使镁负极极片表面更为均匀, 明显改善了镁硫电池的循环稳定性和倍率性能.  相似文献   

2.
锂硫电池由于其超高理论能量密度(2567 Wh·kg^?1),较低的成本,以及环境友好性,被视为下一代储能设备的有力竞争者之一.鉴于粘结剂在稳定硫正极结构和抑制多硫化物穿梭方面可发挥重要作用,发展高性能硫正极粘结剂是改善锂硫电池性能的有效途径之一.本文研究了以果胶作为锂硫电池正极粘结剂的可行性.研究表明,采用果胶作为粘结剂的锂硫电池在电化学循环测试中首次放电比容量可达1210.6 mAh·g^?1,并且在200次循环后仍有837.4 mAh·g^?1的放电比容量,明显优于羧甲基纤维素钠-丁苯橡胶复合粘结剂的电池性能.经研究证实果胶粘结剂性能优良的原因在于其可以有效确保多壁碳纳米管/硫复合正极的结构稳定性并抑制多硫化物的穿梭.  相似文献   

3.
吴凯 《电化学》2020,26(6):825
锂硫电池具有能量密度高、价格低等优势,有希望应用于下一代储能领域. 但锂硫电池仍然存在一些问题,如多硫化物穿梭效应、缺乏有效的锂硫电池规模制备工艺等. 为了解决这些问题,作者以不同商用碳材料(乙炔黑、科琴黑与碳纳米管)和单质硫复合作为正极材料,探究正极制备工艺对多硫化物穿梭效应抑制效果及锂硫电池性能的影响. 通过研究,作者得出以下结论:科琴黑作为单质硫的载体,与单质硫球磨8 h后,匹配粘结剂聚乙烯吡咯烷酮(PVP)制备的正极浆料可实现在涂布和辊压后极片的厚度达到500 μm、压实密度达到991.65 mg·cm -3. 作者将最终得到的正极极片应用于高硫载量锂硫软包电池,电池首圈放电容量为137.4 mA·h,经过10圈循环后,放电容量为115.5 mA·h,表现出优异的电化学性能. 该碳硫复合正极材料制备工艺有望在锂硫电池的宏量制备中获得应用.  相似文献   

4.
锂硫电池具有高的理论比容量(1675 mAh·g-1)和能量密度(2600 Wh·kg-1),是一种新型的高性能储能电池。本文全面介绍了锂硫电池最新的基础研究,详细阐述了电池的正极、黏合剂、电解质、隔膜、负极和一些最新的锂硫电池组装与结构设计。硫可以和其他材料以不同方式复合后作为正极来提高电池的导电性以及抑制其电池充放电过程中的“穿梭效应”,以此来改善电池性能;在黏合剂和电解质研究方面,可以选择一些与电极配套和功能性的黏合剂以及不同类型的电解质;同样,在隔膜方面也涉及到隔膜类型的选择、复合与改性处理;在负极方面,对于锂片负极可采用涂覆保护薄膜或膜预锂化处理等方法来改善电池的稳定性和安全性;在一些新颖的电池组合方面,过渡层、新型集流体的运用以及电池结构的新设计也极大提高了电池电化学性能。最后,本文分析了现有锂硫电池存在的缺陷和问题,并对未来可能的发展方向进行了预测。  相似文献   

5.
作为一类由共轭单元构建的多孔材料,共轭纳米孔聚合物(CNPs)具有开放的孔骨架、高的比表面积、永久的微孔-介孔、共轭结构以及可灵活设计的孔壁化学环境,有望成为一类理想的宿主材料,实现从分子和纳米尺度上固定或捕获客体。锂硫电池具有比能量高、成本低、环境友好等优势,是一种非常有前景的高比能锂二次电池;然而,硫的分步还原或氧化过程中产生的中间态多硫化物在电解液中的溶解穿梭现象,是导致电池循环稳定性差的根本原因之一。构建束缚多硫化物的宿主材料是锂硫电池性能突破的关键。CNPs由于其结构优势,有望成为性能优良的硫宿主材料。本文综述了近年来CNPs在锂硫电池中的应用,重点讨论了抑制"穿梭效应"提升电池性能的策略与方法,并对未来该领域的发展进行了展望。  相似文献   

6.
陈军 《电化学》2016,22(5):435
以电化学能量储存和转化为特点的电池、电容器等储能技术,正在信息通讯、新能源汽车、微电网、分布式发电、大型电力储能、智能电网等领域得到广泛应用,将有力推动能源互联网的快速发展. 作为储能核心技术之一的锂电池、钠电池与超级电容器,更加受到重视. 这些电化学储能装置的性能依赖于所使用的电极材料与结构等. 发展高能量密度、高功率密度和长循环寿命的低成本储能体系成为能源电化学材料研究的核心. 本专辑围绕锂离子电池、钠离子电池、锂硫电池、超级电容器等,收录了在该领域具有丰富研究经验的团队所撰写的8篇相关综述和研究论文. 其中,围绕下一代锂离子电池负极硅材料,邀请了3篇综述和研究论文;鉴于丰富的钠资源,在钠离子电池研究方面也邀请了3篇综述论文;同时在高能量密度的锂硫电池和高功率密度的超级电容器方面各邀请1篇论文. 从这些论文中,可以部分看出锂离子电池、钠离子电池、锂硫电池、超级电容器等能源电化学材料的研究进展. 希望借助此专辑的出版,能使广大读者更好地了解上述几类电池、电容器的研究现状,研究趋势和存在问题及挑战,为更深入地开展该领域研究提供参考,以推动我国能源电化学材料研究的进一步发展. 在此,对专辑的所有作者、审稿人及编辑部工作人员的辛勤劳动,表示最衷心的感谢!  相似文献   

7.
提出在电解液中加入电荷转移中间体改善锂硫电池低温性能的思路,在电解液中添加芘作为电荷转移中间体,加速低温下聚苯胺锂硫电池电化学反应的平衡过程.循环伏安研究证明,芘在锂硫电池放电过程中的高压平台附近具有电化学活性,并通过X射线光电子能谱证实芘的引入能够使锂硫电池在低温下提高多硫化物平衡速率,延长第一平台,生成更多长链多硫化锂.对同样电极材料组成的聚苯胺/硫复合正极材料构成的锂硫电池,当在电解液中加入0.1 mol/L的芘时,相比于不含芘的锂硫电池,其第50次充放电循环下容量在0oC时能够提升22.8%,而在-15oC时能提升25.1%.  相似文献   

8.
张松涛  郑明波  曹洁明  庞欢 《化学进展》2016,28(8):1148-1155
锂硫电池具有高的理论比容量和理论能量密度,被认为是当前最有前景的二次电池体系之一。现阶段锂硫电池的研究工作主要集中于高性能硫正极材料的设计与合成。具有优良的导电性、良好的结构稳定性和多孔结构的纳米碳材料,比如活性碳、介孔碳、超小微孔碳、多级结构多孔碳、空心碳球和空心碳纤维,充分满足了锂硫电池正极材料对碳基体的要求。本文综述了近年来多孔碳/硫复合材料作为硫正极的研究进展。总结了以具有不同结构特征的多孔碳基体负载硫组装的锂硫电池的电化学性能,并分析了不同多孔结构对性能的影响。最后在此基础上,从多孔碳/硫复合正极材料的设计和合成的角度,展望了其未来的发展趋势。  相似文献   

9.
具有高比容量和低成本的锂硫电池被认为是下一代电池的重要候选者.然而,低的硫利用率、严重的穿梭效应以及金属锂负极枝晶的生长制约其实际应用.在电解液中引入添加剂被证实是一种简单有效的性能改善策略.为此,本文将高浓度的LiI引入到Li-S电池的常规电解液中,研究高浓度的LiI电解液对硫正极的利用、金属锂负极的保护以及对应电池电化学性能的影响.结果表明,高浓度的碘化锂电解液能够在金属锂负极表层形成稳定的保护层,抑制了锂枝晶的产生.与此同时,碘化锂的引入大幅度提高电池的比容量、有效改善电池的倍率性能和循环稳定性.通过优化发现,浓度为0.5 mol·L-1的LiI具有最佳的电化学性能.采用此电解液的锂硫电池,在1 C倍率下,放电容量高达1 200 mAh·g-1. 200次循环之后,容量仍能保持在880 mAh·g-1,容量保持率接近75%.此外,电池展示了良好的倍率性能,在5 C倍率下,放电容量依然高达700 mAh·g-1.  相似文献   

10.
“蛋黄蛋壳”结构纳米材料,具有易于调控的“蛋黄”、“蛋壳”和“空腔”结构,可视作“纳米反应器”,在催化、储能等领域表现出显著的应用潜力。尤其在电化学能源存储和转换方面,该结构纳米电极具有大的比表面积和独特的核壳结构,在充放电过程中可缓解电极的体积变化,提供快速的离子/电子输运通道,强化中间产物的吸附和提升转换反应效率等,能显著提高电极稳定性、倍率性能和循环性能,是一类较为理想的电极材料。本文针对“蛋黄蛋壳”结构纳米电极在锂/钠离子电池、锂硫电池等新兴二次电池领域的实际应用,总结了具有该结构纳米电极的设计与合成策略,包括:模板法、奥斯特瓦尔德熟化、电化学置换、克肯达尔效应等,评述了各种策略的优缺点以及电极材料的应用进展,最后对该类材料在锂/钠体系及锂硫电池二次电池方面的研究与应用前景进行了展望。  相似文献   

11.
The Na/PVdF/S cells were composed of solid sodium, sulfur, and polyvinylidene fluoride–hexafluoropropene (PVdF) gel polymer electrolyte. The PVdF polymer electrolyte was prepared form tetraglyme plasticizer and NaCF3SO3 salt, and its electrochemical properties were studied using CV and impedance analysis. The interfacial resistance between sodium and polymer electrolyte increase with storage time, which might be associated with passivation layer. Solid-state sodium/sulfur cell using a PVdF gel polymer electrolyte has been tested. The Na/PVdF/S cell with 0.288 mA cm?2 shows a high discharge capacity of 392 mAh g?1 and 36 mAh g?1 after 20 cycles. The cycle performance of Na/GPE/S cell operating at 25 °C is worse than Na/S cell at a high temperature.  相似文献   

12.
Emerging rechargeable sodium‐ion storage systems—sodium‐ion and room‐temperature sodium–sulfur (RT‐NaS) batteries—are gaining extensive research interest as low‐cost options for large‐scale energy‐storage applications. Owing to their abundance, easy accessibility, and unique physical and chemical properties, sulfur‐based materials, in particular metal sulfides (MSx) and elemental sulfur (S), are currently regarded as promising electrode candidates for Na‐storage technologies with high capacity and excellent redox reversibility based on multielectron conversion reactions. Here, we present current understanding of Na‐storage mechanisms of the S‐based electrode materials. Recent progress and strategies for improving electronic conductivity and tolerating volume variations of the MSx anodes in Na‐ion batteries are reviewed. In addition, current advances on S cathodes in RT‐NaS batteries are presented. We outline a novel emerging concept of integrating MSx electrocatalysts into conventional carbonaceous matrices as effective polarized S hosts in RT‐NaS batteries as well. This comprehensive progress report could provide guidance for research toward the development of S‐based materials for the future Na‐storage techniques.  相似文献   

13.
Ambient‐temperature sodium–sulfur (Na–S) batteries are considered a promising energy storage system due to their high theoretical energy density and low costs. However, great challenges remain in achieving a high rechargeable capacity and long cycle life. Herein we report a stable quasi‐solid‐state Na‐S battery enabled by a poly(S‐pentaerythritol tetraacrylate (PETEA))‐based cathode and a (PETEA‐tris[2‐(acryloyloxy)ethyl] isocyanurate (THEICTA))‐based gel polymer electrolyte. The polymeric sulfur electrode strongly anchors sulfur through chemical binding and inhibits the shuttle effect. Meanwhile, the in situ formed polymer electrolyte with high ionic conductivity and enhanced safety successfully stabilizes the Na anode/electrolyte interface, and simultaneously immobilizes soluble Na polysulfides. The as‐developed quasi‐solid‐state Na‐S cells exhibit a high reversible capacity of 877 mA h g?1 at 0.1 C and an extended cycling stability.  相似文献   

14.
A unique sodium sulfide (Na2S) cathode is developed, which will allow the use of sodium‐free anodes for room‐temperature sodium–sulfur (Na–S) batteries. To overcome the “inert” nature of the Na2S, a special cathode structure is developed by spreading the multi‐walled carbon nanotube (MWCNT)‐wrapped Na2S particles onto MWCNT fabrics. Spectroscopic and electrochemical analyses reveal a series of polysulfide intermediates involved in the charge/discharge of the cell. The Na–S battery prepared in full discharge state with the Na2S/MWCNT cathode provides a remarkable capacity of 500 A h kg?1 (based on sulfur mass) after 50 cycles.  相似文献   

15.
Room-temperature sodium–sulfur (RT−Na/S) batteries hold great promise to meet the requirements of large-scale energy storage due to their high theoretical energy density, low material cost, resource abundance, and environmental benignity. However, the poor cycle performance and low utilization of active sulfur greatly hinder their practical application. As the essential part directly related to the battery performance, the S-based cathode has attracted tremendous research interests in recent years. This review highlights recent progress in cathode materials for RT−Na/S batteries. Particularly, basic insights into the Na/S reaction mechanism are presented and representative works on S-based cathode materials are systematically summarized. The remaining challenges and developing trends of RT−Na/S batteries are also discussed. We hope this review can shed light on the field of next-generation metal-sulfur batteries.  相似文献   

16.
石墨电极上硫化钠的阳极氧化机理探索   总被引:5,自引:0,他引:5  
电解硫化氢气体的碱性吸收液(Na2S表示)产生单质硫和氢气的研究是治理硫化氢废气的一种新方法[1 -7],较之Claus法有许多优点[3,4],这对环境保护和资源回收均具有重要的实际意义.文献对硫化物水溶液电化学氧化机理的研究主要着重于在某些贵金属阳极上,包括某些硫化矿的湿法冶金反应过程的研究[8,9],光电化学电池中使用多硫化物的研究[10 -13],以及硫化物电解时产生单质硫的电催化活性研究[14]等 ;但在石墨阳极上硫化物电化学氧化机理的研究报导却很少[3,4].本文研究在石墨阳极上硫化钠水溶液…  相似文献   

17.
通过熔融扩散法合成了一系列不同含硫量的有序介孔碳(CMK-3)/硫复合材料(CxSy). 采用X射线衍射(XRD)、拉曼光谱(Raman)、比表面积测定仪(BET)、扫描电镜(SEM)、透射电镜(TEM)分析、表征和观察样品. 将复合材料组装成钠硫电池,室温下测试电化学性能. 循环伏安(CV)曲线结果表明,室温钠硫电池在1.61 V处有一个还原峰,对应于Na2Sx(x = 2 ~ 5)的形成;在1.82 V和1.95 V分别有一个氧化峰,对应于Na2Sx(x = 2 ~ 5)的分解. 50 wt%硫含量(C1S1)电极0.05C(1C=558 mA·g-1)倍率首周放电容量500 mAh·g-1,50周期循环比容量为305.6 mAh·g-1. 交流阻抗数据拟合计算其表观活化能为21.83 kJ·mol-1. 本研究可为室温钠硫电池多孔电极材料的研究提供一定的指导作用.  相似文献   

18.
The elemental sulfur electrode with Cu2+ as the charge carrier gives a four‐electron sulfur electrode reaction through the sequential conversion of S?CuS?Cu2S. The Cu‐S redox‐ion electrode delivers a high specific capacity of 3044 mAh g?1 based on the sulfur mass or 609 mAh g?1 based on the mass of Cu2S, the completely discharged product, and displays an unprecedently high potential of sulfur/metal sulfide reduction at 0.5 V vs. SHE. The Cu‐S electrode also exhibits an extremely low extent of polarization of 0.05 V and an outstanding cycle number of 1200 cycles retaining 72 % of the initial capacity at 12.5 A g?1. The remarkable utility of this Cu‐S cathode is further demonstrated in a hybrid cell that employs an Zn metal anode and an anion‐exchange membrane as the separator, which yields an average cell discharge voltage of 1.15 V, the half‐cell specific energy of 547 Wh kg?1 based on the mass of the Cu2S/carbon composite cathode, and stable cycling over 110 cycles.  相似文献   

19.
Room‐temperature sodium–sulfur (RT‐Na/S) batteries hold significant promise for large‐scale application because of low cost of both sodium and sulfur. However, the dissolution of polysulfides into the electrolyte limits practical application. Now, the design and testing of a new class of sulfur hosts as transition‐metal (Fe, Cu, and Ni) nanoclusters (ca. 1.2 nm) wreathed on hollow carbon nanospheres (S@M‐HC) for RT‐Na/S batteries is reported. A chemical couple between the metal nanoclusters and sulfur is hypothesized to assist in immobilization of sulfur and to enhance conductivity and activity. S@Fe‐HC exhibited an unprecedented reversible capacity of 394 mAh g?1 despite 1000 cycles at 100 mA g?1, together with a rate capability of 220 mAh g?1 at a high current density of 5 A g?1. DFT calculations underscore that these metal nanoclusters serve as electrocatalysts to rapidly reduce Na2S4 into short‐chain sulfides and thereby obviate the shuttle effect.  相似文献   

20.
The sodium sulfur (Na/S) battery is one of the most promising candidates for energy storage applications developed since the 1980s. However, the seal between the alpha-alumina and beta-alumina in the Na/S battery presents a challenge. In this work, the new glass-ceramic sealants for the Na/S battery have been developed. The borosilicate glass was chosen as the basic glass and TiO2 as the nucleating agent. The sintering behavior was evaluated by the shrinkage curves and the densities of the sintered samples. The sintering temperature of 750 °C was obtained. The thermal expansion coefficient (TEC) of the glass-ceramic sealants matched well with that of the alpha-alumina and beta-alumina. The thermal shock resistance and chemical stability of the sealants were also satisfactory. No microcracking was observed in the sealants after thermal shock for 100 times. The diffusion layer of about 10 μm was found between the glass and the substrate after 850 h. However, the densification of the sealants remained to be further improved. The factors influencing the densification of the sealants were clarified, and the possible solving means were proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号