首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two sensitive and reproducible methods are described for the quantitative determination of dasatinib in the presence of its degradation products. The first method was based on high performance thin layer chromatography (HPTLC) followed by densitometric measurements of their spots at 280 nm. The separation was on HPTLC aluminium sheets of silica gel 60 F254 using toluene:chloroform (7.0:3.0, v/v). This system was found to give compact spots for dasatinib after development (R F value of 0.23 ± 0.02). The second method was based on high performance liquid chromatography (HPLC) of the drug from its degradation products on reversed phase, PerfectSil column [C18 (5 μm, 25 cm × 4.6 mm, i.d.)] at ambient temperature using mobile phase consisting of methanol:20 mM ammonium acetate with acetic acid (45:55, v/v) pH 3.0 and retention time (t R = 8.23 ± 0.02 min). Both separation methods were validated as per the ICH guidelines. No chromatographic interference from the tablet excipients was found. Dasatinib was subjected to acid–alkali hydrolysis, oxidation, dry heat, wet heat and photo-degradation. The drug was susceptible to acid–alkali hydrolysis and oxidation. The drug was found to be stable in neutral, wet heat, dry heat and photo-degradation conditions. As the proposed analytical methods could effectively separate the drug from its degradation products, they can be employed as stability indicating.  相似文献   

2.
A chiral liquid chromatographic method is described for the determination of the enantiomers of tamsulosin hydrochloride and its synthetic intermediates. Enantioseparation was achieved on a Chiralcel OD-R column (250 mm × 4.6 mm, 10 m) using a mobile phase consisting of a mixture of 0.5 mol L–1 sodium perchlorate and acetonitrile (80:20, v/v, pH 4.0). The flow rate was 0.4 mL min–1 and detection was at 223 nm. Excellent enantiomer separations were achieved for tamsulosin hydrochloride and its synthetic intermediates. No other methods are available for the separation of these enantiomers. The method developed in this study has been successfully applied for purity control.  相似文献   

3.
高效液相色谱手性固定相法拆分阿折地平对映体   总被引:2,自引:0,他引:2  
张恺  薛娜  李林  李凡  杜玉民 《色谱》2010,28(2):215-217
建立了阿折地平对映体的高效液相色谱拆分方法。采用Chiralpak AD-H (250 mm×4.6 mm, 5.0 μm, Daicel公司)手性色谱柱在正相条件下直接拆分阿折地平对映体,考察了固定相种类、流动相组成及柱温等对阿折地平对映体分离的影响。确定了最佳的拆分条件: 流动相为正己烷-异丙醇(90:10, v/v),流速为0.8 mL/min,检测波长为254 nm;柱温为20 ℃;在此条件下阿折地平对映体的分离度为3.3。该法简单快速,重现性好。  相似文献   

4.
A simple liquid chromatographic method was developed for the separation and quantification of voriconazole and its enantiomer in drug substance. The separation was achieved on Chiral cel-OD (250 mm × 4.6 mm × 10 μm) using mobile phase consisting of n-hexane and ethanol in the ratio 9:1 (v/v) with a flow rate of 1.0 mL min−1, at 27 °C column temperature and detection at 254 nm with an injection volume of 20 μL. Ethanol was used as diluent. The method is capable of detecting the (2S, 3R) enantiomer down to 0.0075% and can quantify down to 0.021% with respect to sample concentration. The method is rapid and the resolution achieved was about 3.0. This method can be employed for the quantification of (2S, 3R) enantiomer in voriconazole drug substance.  相似文献   

5.
The reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed for determination of lercanidipine hydrochloride and its synthetic impurities, degradation and oxidative products in Carmen® tablets. The best separation was performed on Zorbax SB C18 column, 250 x 4.6 mm, particle size 5 m. Acetonitrile-water-triethylamine 55:44.8:0.2 (v/v/v) was used as a mobile phase with flow rate 1 mL min–1. pH was adjusted to 3.0 with orthophosphoric acid. UV detection was performed at 240 nm. Duration of chromatographic run was about 12 min for six examined compounds. The chromatographic conditions for the determination of lercanidipine hydrochloride and its related substances were the same, but the concentration of lercanidipine hydrochloride was 0.03 mg mL–1 for assay and 0.3 mg mL–1 for related substances. The validation of the method performance characteristics (figures of merits, quality of parameters) was established to be adequate for the intended use. The evaluation of number of parameters, such as selectivity, linearity, accuracy, specificity, precision (repetability and reproducibility), sensitivity and detection and determination limits is entailed.Acknowledgements This work was supported by the Institute of Pharmacy of Serbia, Belgrade and by the Ministry for Science, Technology and Development of Serbia, Contact: 1458  相似文献   

6.
Levetiracetam is used in combination with other medications to treat certain types of seizures in people with epilepsy. Levetiracetam is in a class of medications called anticonvulsants and it works by decreasing abnormal excitement in the brain. A chromatographic separation was achieved on a YMC pack ODS AQ, 250 mm × 4.6 mm, 5 μm column using diluted phosphoric acid and acetonitrile in the ratio 85:15 v/v. Forced degradation studies were performed on the levetiracetam drug substance. The drug substance was degraded to Imp-B during acid and base hydrolysis. When the stress samples were assayed, the mass balance was matching. The sample solution and mobile phase was found to be stable up to 48 h at 25 °C. The developed method was validated with respect to linearity, accuracy, precision and robustness.  相似文献   

7.
An isocratic high-performance liquid chromatographic method has been developed for assay of ceftiofur sodium in drug substance and in sterile powder for injection. Chromatography was performed on a 250 mm × 4.6 mm, 5 μm particle, C18 column with a 78:22 (v/v) mixture of 0.02 m disodium hydrogen phosphate buffer (pH adjusted to 6.0 with 85% orthophosphoric acid) and acetonitrile as mobile phase, at a flow rate of 1.0 mL min−1. The separation was monitored by UV detection at 292 nm. Validation of the method for linearity and range, intra- and inter-day precision, accuracy, specificity, recovery, robustness, and limits of quantification and detection yielded good results. The calibration plot was linear from 20.0–120.0 μg mL−1 and the correlation coefficient was 0.9999. It was shown that ceftiofur was degraded under acidic, alkaline, oxidative, and photolytic conditions. The method was found to be stability-indicating and could be used for routine analysis of ceftiofur sodium for injection.  相似文献   

8.
A sensitive, simple, and accurate high-performance liquid chromatographic method has been developed for determination of valdecoxib and the internal standard rofecoxib in human plasma. Protein was precipitated from plasma samples by addition of perchloric acid (HClO4); the drug was then extracted with diethyl ether. Separation was performed on a Cosmosil C18 column (150 mm × 4.6 mm i.d., 5 m particles) with ammonium acetate buffer-acetonitrile, 60:40 (v/v), containing 0.1% TEA, pH 6.5, as mobile phase. Detection and quantification were performed by UV-visible detection at 239 nm. Detection and quantification limits were 3 and 5 ng mL–1, respectively. The linear concentration range for valdecoxib was 5–400 ng mL–1. The validated RP HPLC method was used for determination of the pharmacokinetic data for the drug in humans.  相似文献   

9.
The current paper reports the development and validation of stability‐indicating HPLC and HPTLC methods for the separation and quantification of main impurity and degradation product of Carbimazole. The structures of the degradation products formed under stress degradation conditions, including hydrolytic and oxidative, photolytic and thermal conditions, were characterized and confirmed by MS and IR analyses. Based on the characterization data, the obtained degradation product from hydrolytic conditions was found to be methimazole—impurity A of Carbimazole as reported by the British Pharmacopeia and the European Pharmacopeia. A stability‐indicating HPLC method was carried out using a Zorbax Eclipse Plus CN column (150 × 4.6 mm i.d, 5 μm particle size) and a mobile phase composed of acetonitrile–0.05 m KH2PO4 (20: 80, v/v) in isocratic elution, at a flow rate of 1 mL/min. The method was proved to be sensitive for the determination down to 0.5% of Carbimazole impurity A. Additionally, a stability‐indicating chromatographic HPTLC method was achieved using cyclohexane–ethanol (9:1, v/v) as a developing system on HPTLC plates F254 with UV detection at 225 nm. The proposed HPLC and HPTLC methods were successfully applied to Carbimazole® tablets with mean percentage recoveries of 100.12 and 99.73%, respectively.  相似文献   

10.
A simple, isocratic, rapid and accurate reversed phase high performance liquid chromatography method was developed for the quantitative determination of tazarotene. The developed method is also applicable for the related substance determination in bulk drugs. The chromatographic separation was achieved on a Hypersil C18 (250 mm × 4.6 mm 5 μm) column using water pH 2.5 with orthophosphoric acid:acetonitrile (15:85, v/v) as a mobile phase. The chromatographic resolutions between tazarotene and its potential impurity A and B were found greater than three. The limit of detection and limit of quantification of impurities were found to be 25 and 75 ng mL−1. The percentage recovery of impurities in bulk drug sample was ranged from 96.8 to 103.5.The percentage recovery of tazarotene in bulk drug sample was ranged from 98.4 to 100.9. The developed RPLC method was validated with respect to linearity, accuracy, precision and robustness.  相似文献   

11.
A rapid and accurate HPLC method has been developed for simultaneous determination of pioglitazone and glimepiride. Chromatographic separation of the two pharmaceuticals was performed on a Cosmosil C18 column (150 mm × 4.6 mm, 5 m) with a 45:35:20 (v/v) mixture of 0.01 m triammonium citrate (pH adjusted to 6.95 with orthophosphoric acid), acetonitrile, and methanol as mobile phase, at a flow rate of 1.0 mL min–1, and detection at 228 nm. Separation was complete in less than 10 min. The method was validated for linearity, accuracy, precision, limit of quantitation, and robustness [1, 2]. Linearity, accuracy, and precision were found to be acceptable over the ranges 2.50–30.00 g mL–1 for pioglitazone and 0.10–10.00 g mL–1 for glimepiride.  相似文献   

12.
The oxidation of lomefloxacin (LOM) and balofloxacin (BAL) under the influence of azo initiator of radical reactions of 4,4′-azobis(4-cyanopentanoic acid) (ACVA) and H2O2 was examined. Oxidation using H2O2 was performed at room temperature while using ACVA at temperatures: 40, 50, 60 °C. Additionally, the oxidation process of BAL under the influence of KMnO4 in an acidic medium was investigated. New stability-indicating HPLC methods were developed in order to evaluate the oxidation process. Chromatographic analysis was carried out using the Kinetex 5u XB—C18 100A column, Phenomenex (Torrance, CA, USA) (250 × 4.6 mm, 5 μm particle size, core shell type). The chromatographic separation was achieved while using isocratic elution and a mobile phase with the composition of 0.05 M phosphate buffer (pH = 3.20 adjusted with o-phosphoric acid) and acetonitrile (87:13 v/v for LOM; 80:20 v/v for BAL). The column was maintained at 30 °C. The methods were validated according to the ICH guidelines, and it was found that they met the acceptance criteria. An oxidation process followed kinetics of the second order reaction. The most probable structures of LOM and BAL degradation products formed were assigned by the UHPLC/MS/MS method.  相似文献   

13.
A simple micellar liquid chromatographic technique for deltamethrin determination was developed and validated. The method provided to be suitable for deltamethrin determination in pediculicide shampoo. Kromasil C18 column (150 mm×4.6 mm, 5 μm) and mobile phase −0.12 M sodium dodecyl sulfate with 9% (v/v) 1-butanol were used for deltamethrin separation. Detection wavelength was 265 nm. The retention time was about 15 min. Different validation parameters were evaluated. The specificity of the method was demonstrated. Linearity was established in the range 10–40 μg L−1. The limits of detection and quantitation were 1.06 and 3.22 μg mL−1, respectively. The method showed excellent accuracy (100.6%) and precision (repeatability) gave a relative standard deviation of less than 1%. The influence of the various method parameters (robustness study) was also studied.  相似文献   

14.
A micellar liquid chromatographic technique allowing the separation and simultaneous determination of the active ingredients paracetamol, caffeine, and guaifenesin, and preservatives benzoic acid, methyl and propyl paraben is described. The separation was effective by using the Kromasil C18 column (150 mm × 4.6 mm, 5 μm) and a mobile phase of 1-butanol:water (1:99, v/v), containing 0.04 M sodium dodecyl sulfate and 0.1% (v/v) trichloroacetic acid, for eluting all compounds. The detection wavelength was set as 260 nm. The column heater was also used, set at 40 °C for these determinations. Under these conditions, separation of the six components was achieved in less than 30 min. The specificity of the method was demonstrated. Analytical characteristics such as limit of detection, limit of quantification, linear range, accuracy, precision (repeatability) and the influence of the various method parameters (robustness study) were evaluated. The developed method was applied to the determination of paracetamol, caffeine, guaifenesin, benzoic acid (sodium benzoate), methyl and propyl paraben in cough-drop syrups. Presented at the International Conference “Modern physical chemistry for advanced materials (devoted to the 100th birthday of Professor Nikolai Izmailov)”, Kharkov, Ukraine, June 2007.  相似文献   

15.
This present work narrates the stress stability behavior and development of a liquid chromatographic method for the quantitative determination of anastrozole. Anastrozole is appropriately used when using substantial amounts of aromatizing steroids, or when one is prone to gynecomastia and using moderate amounts of such steroids. A chromatographic separation was achieved on a Hichrom RPB18 (250 × 4.6 mm, 5 μ) column using water and mixture of acetonitrile and methanol (1:1 ratio) as mobile phase. Forced degradation studies were performed on bulk samples of anastrozole using acid, base, hydrogen peroxide, heat and UV light. Degradation of the drug substance was observed in base hydrolysis. Degradation product formed under base hydrolysis was found to be Imp-C. The sample solution and mobile phase were found to be stable up to 48 h. The developed method was validated with respect to linearity, accuracy, precision, robustness and forced degradation studies prove the stability indicating power of the method.  相似文献   

16.
This paper describes validated high-performance column liquid chromatographic (HPLC) and high-performance thin-layer chromatographic (HPTLC) methods for simultaneous estimation of acetylsalicylic acid (ASA) and clopidogrel bisulfate (CLP) in pure powder and formulations. The HPLC separation was achieved on a Nucleosil C8 column (150 mm length x 4.6 mm id, 5 microm particle size) using acetonitrile-phosphate buffer, pH 3.0 (55 + 45, v/v) mobile phase at a flow rate of 1.0 mL/min at ambient temperature. The HPTLC separation was achieved on an aluminum-backed layer of silica gel 60F254 using ethyl acetate-methanol-toluene-glacial acetic acid (5.0 + 1.0 + 4.0 + 0.1, v/v/v/v) mobile phase. Quantitation was achieved with UV detection at 235 nm over the concentration range 4-24 microg/mL for both drugs, with mean recoveries of 99.98 +/- 0.28 and 100.16 +/- 0.66% for ASA and CLP, respectively, using the HPLC method. Quantitation was achieved with UV detection at 235 nm over the concentration range of 400-1400 ng/spot for both drugs, with mean recoveries of 99.93 +/- 0.55 and 100.21 +/- 0.83% for ASA and CLP, respectively, using the HPTLC method. These methods are simple, precise, and sensitive, and they are applicable for the simultaneous determination of ASA and CLP in pure powder and formulations.  相似文献   

17.
Summary A rapid and accurate LC method is described for simultaneous determination of pseudoephedrine hydrochloride (PSE), acetaminophen (AMP), dextromethorphen hydrobromide (DEX), and diphenhydramine hydrochloride (DPH) in a compound formulation. Chromatographic separation of the four drugs was achieved on a Hypersil CN column (150 mm × 4.6 mm, 5 m particle) by use of a mobile phase comprising a mixture of 3 mM ion-pairing solution, 2% aqueous triethylamine solution, and 2 M phosphoric acid, 68:48:88 (v/v), pH 3.0, delivered at 1.0 mL min–1. Compounds were detected at 215 nm and the run time was less than 10 min. The linearity, accuracy, and precision of the method were found to be acceptable over the concentration ranges 6.1–36.4 g mL–1 for PSE, 65.0–390.0 g mL–1 for AMP, 3.1–18.6 g mL–1 for DEX, and 5.0–30.0 g mL–1 for DPH.  相似文献   

18.
This contribution describes use of a separation method based on on-line coupling of a multisyringe flow system with a chromatographic monolithic column for simultaneous determination of hydrochlorothiazide and losartan potassium in tablets. The system comprised a multisyringe module, three low-pressure solenoid valves, a monolithic C18 column (25 mm × 4.6 mm i.d.), and a diode-array detector. The mobile phase was 10 mmol L−1 potassium dihydrogen phosphate (pH 3.1)-acetonitrile-methanol (65:33:2 v/v/v) at a flow rate 0.8 mL min−1. UV detection was carried out at 226 nm. The multi-syringe chromatographic (MSC) method with UV spectrophotometric detection was optimized and validated. Results from validation were very good. The analysis time was about 400 s. The method was found to be applicable to routine analysis of both compounds in tablets. The coupling of the monolithic columns with a multi-syringe flow-injection analysis manifold provides an excellent and inexpensive tool to solve the separation problems without use of HPLC instrumentation.  相似文献   

19.
Summary An improved LC method is described for the separation of doxycycline and its impurities. The separation of 2-acetyl-2-decarboxamidodoxycycline from the main peak doxycycline is much better than that obtained with official pharmacopoeia methods. The method is robust and shows good selectivity, repeatability, linearity and sensitivity. Eight commercial samples were examined using the method developed. The method uses an XTerra RP-18, 5 m (25 cm × 4.6 mm I. D.) column kept at a temperature of 35 °C. UV detection is performed at 280 nm. The mobile phase consists of acetonitrile – 0.2 M tetrabutylammonium hydrogen sulphate pH 7.0 – 0.3 M ethylenediaminetetraacetate pH 7.0 – water (130:350:350:170, v/v/v/v).  相似文献   

20.
A rapid reversed-phase high-performance liquid chromatographic procedure is developed and validated for the resolution of the cis-isomer of 1-[[p-[2-(3-ethyl-4-methyl-2-oxo-3-pyrroline-1-carboxamido) ethyl] phenyl] sulfonyl]-3-(trans-4-methylcyclohexyl) urea, a dopamine agonist in bulk drugs. The cis-isomer and glimepiride were baseline resolved on a Waters Symmetry column (50 × 4.6 mm, 3.5 μm) using a mobile phase system containing water: tetrahydrofuran (75:25; v/v. The chromatographic resolutions between cis-isomer and glimepiride were found to be greater than two. The developed method was extensively validated and proved to be robust. The limit of detection and the limit of quantification of cis-isomer were 500 and 1,500 ng mL−1, respectively, for 10 μL injection volume. The percentage recovery of the cis-isomer ranged from 97.3 to 102.0 in bulk drug samples of glimepiride. Glimepiride sample solution and mobile phase were found to be stable for at least 48 h. The proposed method was found to be suitable and accurate for the quantitative determination of the cis-isomer in bulk drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号