共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
基于结构化光纤Bragg光栅的折射率梯度传感器研究 总被引:4,自引:0,他引:4
研究结构化光纤Bragg光栅(FBG)在折射率(RI)呈线性分布的液相介质环境下的响应特性。数值仿真结果表明,结构化FBG的反射谱特性强烈依赖于液相介质折射率(RI)的线性分布函数的某些特征参数,比如液相介质的RI沿FBG轴向的分布梯度、RI在FBG两端的差值等。基于理论仿真结果,建立了结构化FBG在低RI区(1.330~1.360)对液相介质的RI梯度进行测量的线性近似理论模型。通过相关实验研究,证明了理论仿真和分析的合理性及基于结构化FBG的RI梯度传感器在现实应用中的可行性。 相似文献
3.
4.
5.
6.
通过对柚子型微结构光纤Bragg光栅的多个反射峰的温度和应变传感特性进行的理论和实验 研究,得出柚子型微结构光纤Bragg光栅的反射波长与温度呈二次关系,且理论和实验二者 吻合较好; 同时发现每个反射峰的温度灵敏度不同.理论分析柚子型微结构光纤Bragg光栅的 反射波长与应变呈线性关系,实验得到了该种Bragg光栅的反射波长与应变的线性关系,实 验结果与理论分析相吻合.由于微结构光纤光栅反射谱中多个峰对温度和应变等物理量敏感 度不一致,这种Bragg光栅更适合应用到多参量传感领域.
关键词:
微结构光纤
光纤Bragg光栅
温度传感
应变传感 相似文献
7.
8.
报道了一种利用飞秒激光微纳加工技术在非敏化单模光纤中制备的高阶倾斜光纤Bragg光栅(HOTFBG)。倾斜折射率调制是将聚焦的飞秒激光穿过高阶相位掩模板,并扫描曝光倾斜放置的光纤实现的,其覆盖了全部纤芯和部分包层。该单一HO-TFBG在1200~1700nm波长范围内可形成三组与高阶Bragg谐振相对应的"包层模式谐振系列"。因此,其携带的信息量远高于紫外倾斜光纤Bragg光栅(UV-TFBG),其功能性更佳,尤其适用于多传感参数的监控。研究了HO-TFBG的折射率、轴向应变和温度等传感特性。此外,该器件兼具飞秒激光诱导光栅结构的高温稳定性,其在苛刻环境中的化学和物理传感具有潜力。 相似文献
9.
采用WDM技术的光纤Bragg光栅传感网络 总被引:5,自引:2,他引:5
采用绝对测量原理的波长调制技术,光纤Bragg光栅可组成并行、串行和阵列WDM拓扑结构.分析表明,光纤Bragg光栅网络的工作原理类似于一个多宽带平面镜.利用光谱仪可测量上述光纤Bragg光栅网络的反射谱,其中,光源是宽带为~40nm的掺饵光纤放大器.当网络中的光纤Bragg光栅受扰动后,受扰光栅的反射谱发生相应的变化,即Bragg波长发生相应的偏移.结果表明,当事先确定了光纤光栅的波长调制范围,反射的峰值波长能反应光纤光栅传感网络的信息.值得注意的是~3nm的波长调制范围可满足~100℃和~2000με的参量测量. 相似文献
10.
光纤Bragg光栅热敏力敏效应研究及应用探讨 总被引:5,自引:1,他引:5
本文报道了光纤Bragg光栅热敏力敏效应的实验研究结果,测量所得的光纤Bragg光栅温度系数和应力系数分别为6.84×10-6/℃和7.27×10-6/gf,与理论值6.85×10-6/℃和7.32×10-6/gf符合得很好.在20~180℃和0~50gf的温度应力测量范围内,光纤Bragg光栅透射谱中心波长移动量同温度应力具有良好的线性关系.基于光纤Bragg光栅的热敏力敏效应,本文还讨论了光纤Bragg光栅温度应变传感器实用化时必须首先考虑的一些关键问题. 相似文献
11.
12.
13.
14.
15.
16.
17.
18.
轮辐式光纤光栅压力传感器的设计与实现 总被引:1,自引:9,他引:1
利用光纤光栅作为基本传感元件,设计研制了一种基于轮辐式压力盒装置的新型光纤光栅压力传感器.常温下在0~30 KN的范围内,其测量线性度达到99.91%,灵敏度达到22 N,且响应速度快.与其它类型的光纤光栅压力传感器相比,轮辐式光纤光栅压力传感器具有更大的测量范围、更高的抗干扰能力,并且由于光纤光栅本身的波分复用特性,可以很方便地构成压力传感网络进行多种物理量、多点的测量.实验表明:本传感系统具有结构简单、操作方便、滞后小、重复性好、结构高度小、重量轻等优点,在桥梁、大厦等超大型建筑以及大型管道等的检测与监测方面将会有更为广阔的应用前景. 相似文献
19.
为了适应矿井、大坝对渗压监测的需要,提出一种活塞和菱形传压结构相结合的光纤布喇格光栅渗压传感器,活塞把测试压力传递到菱形传压结构,菱形传压结构拉动其上下对称连接的弹性钢片,导致粘贴在弹性钢片上的光纤布喇格光栅中心波长产生变化.利用有限元方法在500kPa的测试环境中对顶角分别为90°、110°、130°、150°情况下菱形传压结构的应力特性进行分析,根据仿真参量研制了渗压传感器,并对该传感器进行了压力标定试验和温度补偿试验.实验结果表明:传感器对渗压的灵敏度为2.04nm/MPa,拟合度为0.997,重复性为0.9%,两个测压光栅温度灵敏度分别为0.023 33nm/℃、0.021 68nm/℃,温补光栅为0.009 916nm/℃. 相似文献