首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three ganglioside molecular species, HLG-1 (1), HLG-2 (2), and HLG-3 (3) have been obtained from the lipid fraction of the chloroform/methanol extract of the sea cucumber Holothuria leucospilota. The structures of these gangliosides have been determined, on the basis of chemical and spectroscopic evidence, as 1-O-[(N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (1), 1-O-[(N-glycolyl-alpha-D-neuraminosyl)-(2-->4)-(N-acetyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (2) and 1-O-[alpha-L-fucopyranosyl-(1-->11)-(N-glycolyl-alpha-D-neuraminosyl)-neuraminosyl)-(2-->4)-(N-aetyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (3). The ceramide moieties were composed of heterogeneous phytosphingosine, sphingosine and 2-hydroxy fatty acid units. Compounds 2 and 3 represent new ganglioside molecular species. These three ganglioside molecular species showed neuritogenic activity toward the rat pheochromocytoma cell line, PC-12 cell, in the presence of NGF (nerve growth factor).  相似文献   

2.
Three new disialo- and trisialo-gangliosides, CEG-6 (6), CEG-8 (8), and CEG-9 (9), were obtained, together with one known ganglioside, HLG-3 (7), from the lipid fraction of the chloroform/methanol extract of the sea cucumber Cucumaria echinata. The structures of the new gangliosides were determined on the basis of chemical and spectroscopic evidence to be 1-O-[alpha-L-fucopyranosyl-(1-->11)-(N-glycolyl-alpha-D-neuraminosyl)-(2-->4)-(N-acetyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (6) and 1-O-[(N-glycolyl-D-neuraminosyl)-(2-->11)-(N-glycolyl-D-neuraminosyl)-(2-->4)-(N-acetyl-D-neuraminosyl)-(2-->6)-D-glucopyranosyl]-ceramide (8, 9). The ceramide moieties of each compound were composed of an homogeneous sphingosine or phytosphingosine base and heterogeneous 2-hydroxy or nonhydroxylated fatty acid units. These gangliosides showed neuritogenic activity toward the rat pheochromocytoma cell line PC-12 in the presence of nerve growth factor.  相似文献   

3.
Three ganglioside molecular species, SCG-1, SCG-2, and SCG-3, were obtained from the lipid fraction of the chloroform-methanol extract of the sea cucumber Stichopus chloronotus. On the basis of chemical and spectroscopic evidence, the structures of these gangliosides have been determined to be 1-O-[(N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (SCG-1), 1-O-[8-O-sulfo(major)-(N-acetyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (SCG-2), and 1-O-[alpha-L-fucopyranosyl-(1-->11)-(N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (SCG-3). The ceramide moieties were composed of heterogeneous long-chain base and fatty acid units. SCG-3 is the first type of ganglioside containing a fucopyranose in the sialosyl trisaccharide moiety. Moreover, these three gangliosides exhibited neuritogenic activity toward the rat pheochromocytoma PC12 cells in the presence of nerve growth factor.  相似文献   

4.
Three ganglioside molecular species, OSG-0 (1), OSG-1 (2), and OSG-2 (3) have been obtained from the polar lipid fraction of the chloroform/methanol extract of the brittle star Ophiocoma scolopendrina. The structures of these gangliosides have been determined on the basis of chemical and spectroscopic evidence as 1-O-[(N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (1), 1-O-[8-O-sulfo-(N-acetyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyll-ceramide (2) and 1-O-[(N-glycolyl-alpha-D-neuraminosyl)-(2-->8)-(N-acetyl- and N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (3). The ceramide moieties were composed of heterogeneous unsubstituted fatty acid, 2-hydroxy fatty acid and phytosphingosine units. Compounds 2 and 3 represent new ganglioside molecular species.  相似文献   

5.
Two monomethylated GM(3)-Type ganglioside molecular species, 1 and 2, have been obtained from the polar lipid fraction of the chloroform/methanol extract of the starfish Luidia maculata. The structures of these gangliosides have been determined on the basis of chemical and spectroscopic evidence as 1-O-[8-O-methyl-(N-acetyl-alpha-D-neuraminosyl)-(2-->3)-beta-D-galactopyranosyl-(1-->4)-beta-D-glucopyranosyl]-ceramide (1) and 1-O-[8-O-methyl-(N-glycolyl-alpha-D-neuraminosyl)-(2-->3)-beta-D-galactopyranosyl-(1-->4)-beta-D-glucopyranosyl]-ceramide (2). The ceramide moieties were composed of heterogeneous unsubstituted fatty acid, 2-hydroxy fatty acid, sphingosine and phytosphingosine units. Compound 1, designated as LMG-3, represents new ganglioside molecular species. Compound 2 was a known ganglioside molecular species.  相似文献   

6.
Three new monosialo-gangliosides, CEG-3 (3), CEG-4 (4), and CEG-5 (5), were obtained, together with two known gangliosides, SJG-1 (1) and CG-1 (2), from the lipid fraction of the chloroform/methanol extract of the sea cucumber Cucumaria echinata. The structures of the new gangliosides were determined on the basis of chemical and spectroscopic evidence to be 1-O-[4-O-acetyl-alpha-L-fucopyranosyl-(1-->11)-(N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (3) and 1-O-[alpha-L-fucopyranosyl-(1-->11)-(N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (4, 5). The ceramide moieties of each compound were composed of heterogeneous sphingosine or phytosphingosine bases, and 2-hydroxy or nonhydroxylated fatty acid units. These gangliosides showed neuritogenic activity toward the rat pheochromocytoma cell line PC-12 in the presence of nerve growth factor.  相似文献   

7.
A sensitive micromethod involving extraction, purification and thin-layer chromatography (TLC)-enzyme immunostaining was developed for the quantation of gangliosides and sulphatide, as markers for neuronal disorders and myelin disturbances, in individual samples of less than 5 ml of cerebrospinal fluid. The gangliosides of the gangliotetraose series were individually determined with cholera toxin subunit B by TLC-enzyme-linked immunosorbent assay (ELISA) after chromatography and subsequent sialidase hydrolysis to II3NeuAc-GgOse4Cer (GM1). Other gangliosides and sulphatide were determined with specific monoclonal antibodies by TLC-ELISA. The total ganglioside content varied between 100 and 230 nmol/l in ten normal cerebrospinal fluid samples from adults. The major gangliosides were of the gangliotetraose series, represented by GM1, IV3NeuAc,II3NeuAc-GgOse4Cer, (GD1a), II3(NeuAc)2-GgOse4Cer (GD1b) and IV3NeuAc,II3 (NeuAc)2-GgOse4Cer (GT1b) of which the b-series gangliosides dominated, i.e., GD1b and GT1b.  相似文献   

8.
Micellar inhibition effect of gangliosides on a degradation of drug was investigated, where ganglioside G(M1) (GM1), G(D1a) (GD1a) and G(T1b) (GTlb) whose sialic acid residue is one, two and three, respectively, were used. The base-catalyzed isomerization of prostaglandin A(2) (PGA(2)) to prostaglandin B(2) (PGB(2)) was chosen as a model experiment. The rate for the isomerization of PGA(2) was determined by measuring the concentration of PGA(2) (and PGB(2)) with a high-performance liquid chromatography. Gangliosides micelles inhibited the isomerization of PGA(2). The inhibition effect of GT1b micelles was larger than that of GD1a micelles. This result would be due to the larger absolute value of surface potential of GT1b micelles, which brings about a larger electrostatic repulsion between micellar surface and OH(-). The terminal sialic acid residue of ganglioside was effective to inhibit the isomerization of PGA(2). GM1 micelles without terminal sialic acid residue but with large aggregation number exhibited a superior steric shielding effect rather than an electrostatically repulsive effect. The inhibition effect of GM1 micelles was enhanced by the mixed micellization with the other ganglioside with a terminal sialic acid residue. GM1-GD1a or GM1-GT1b mixed micelles remarkably inhibited the isomerization of PGA(2). The physiological activity of PGs in the biological membranes containing gangliosides was also discussed.  相似文献   

9.
Ganglioside GM3, as well as other gangliosides, offers a variety of modifications in its sialic acid and ceramide moieties GM3 exhibits various types of important biological activities, due to the inability to effectively observe the trafficking of ganglioside GM3, developing sensitive research tools for specific monitoring of GM3 expression and activity is thus desirable. The total synthesis of a dansyl and biotin bifunctionalized fluorescent ganglioside GM3 were reported in this article. From lactose after 13 reaction steps, the compound of 2′ -biotinoylaminoethyl-6-N-dansylamido-6-deoxy-β-D-galatopyranosyl-(1→4)-β-D-glucopy-ranoside was obtained in total yield of 16.2%. Sialylation of dansyl and biotin functionalized lactose by enzymatic method gave dansyl and biotin labeled ganglioside GM3. The fluorescent property of this compound was also investigated.  相似文献   

10.
Separation of gangliosides by anion-exchange chromatography on Mono Q   总被引:1,自引:0,他引:1  
A new type of strong anion-exchange resin, Mono Q, has been used in the separation of brain gangliosides. The resin consists of monodisperse particles (9.8 micron) and was used in prepacked columns with a bed volume of 1 ml. The gangliosides were separated into mono-, di-, tri- and tetrasialoganglioside fractions by a discontinuous gradient of potassium acetate in methanol. The separation was complete in a volume of 50 ml. The major advantages of the new procedure compared to conventional methods are the shorter separation time, higher loading capacity and recovery of separated ganglioside fractions in small solvent volumes. The procedure was applied to the separation of gangliosides from normal human and GM2-gangliosidosis brain.  相似文献   

11.
Hepatic ganglioside composition was investigated in normal and cholestatic Wistar rats. Cholestasis was induced by 17alpha-ethinylestradiol (EE; 5 mg/kg body weight s.c. for 18 days). As compared with controls, the EE administration resulted in severe cholestasis, as indicated by biochemical as well as morphological signs. Gangliosides isolated from the liver tissue were separated by TLC, with resorcinol-HCl detection and densitometric evaluation. As compared with controls, the total hepatic lipid sialic acid content in cholestatic rats was increased almost 2-fold (44.3 +/- 15.2 vs 79.1 +/- 9.0 nmol/g wet weight of liver tissue, p < 0.01). This increase was primarily due to the increase of ganglioside GD1a (3.6 +/- 1.0 vs 11.8 +/- 3.0 nmol/g wet weight of liver tissue, p = 0.001), as well as to the enormous up-regulation of b-series gangliosides GD3 (0.08 +/- 0.03 vs 2.0 +/- 1.2 nmol/g wet weight of liver tissue, p = 0.002), GD1b (0.1 +/- 0.06 vs 5.4 +/- 1.6 nmol/g wet weight of liver tissue, p = 0.002) and GT1b (0.06 +/- 0.03 vs 6.4 +/- 2.6 nmol/g wet weight of liver tissue, p = 0.002). As the majority of gangliosides are concentrated in cell membranes, our findings suggest that dramatic increase of b-series gangliosides might contribute to the protection of hepatocytes against the deleterious effects of cholestasis.  相似文献   

12.
A new capillary GC method is described for the compositional analysis of the three main gangliosides isolated from adult human myometrium. The sample was subjected to methanolysis, acetylation and trimethylsilylation which allows all the constituents to be analyzed simultaneously. The predominant ganglioside was found to be GD3, with GM3 and GT1b the next most abundant.  相似文献   

13.
In previous investigations, we correlated levels of sialic acid, gangliosides, and ganglioside glycosyltransferases with tumorigenesis over a 24-week continuum of growth of hepatocellular neoplasms of the rat induced by the carcinogen N-2-fluorenylacetamide. However, metastatic tumors developed only rarely and were not analyzed. To investigate surface changes associated with metastasis, well-differentiated and poorly differentiated hepatocellular carcinomas were transplanted to syngeneic recipient rats. From those, several metastatic and nonmetastatic isolates were obtained and compared. Both total and ganglioside sialic acid amounts in transplantable hepatomas were elevated above control liver values but were significantly lower for metastatic lines than for nonmetastatic lines. The nonmetastatic lines were characterized by ganglioside patterns depleted in the precursor ganglioside GM3 (sialic acid-galactose-glucose-ceramide) and elevated in the products of the monosialoganglioside pathway. In contrast, metastatic isolates exhibited a restoration of GM3 and nearer normal amounts of other gangliosides. The findings point to differences in sialic acid-containing glycolipids, comparing metastatic and nonmetastatic hepatocellular carcinomas, and further extend the concept that ganglioside alterations do not cause tumorigenesis but are the end result of a cascade of events which apparently continue beyond the onset of metastasis.  相似文献   

14.
A general approach for the detection and structural elucidation of brain ganglioside species GM1, GD1 and GT1 by nano-electrospray ionization quadrupole time-of-flight (nanoESI-QTOF) mass spectrometry (MS), using combined data from MS and MS/MS analysis of isolated native ganglioside fractions in negative ion mode and their permethylated counterparts in the positive ion mode is presented. This approach was designed to detect and sequence gangliosides present in preparatively isolated ganglioside fractions from pathological brain samples available in only very limited amounts. In these fractions mixtures of homologue and isobaric structures are present, depending on the ceramide composition and the position of the sialic acid attachment site. The interpretation of data for the entire sequence, derived from A, B, C and Y ions by nanoESI-QTOFMS/MS in the negative ion mode of native fractions, can be compromised by ions arising from double and triple internal cleavages. To distinguish between isobaric carbohydrate structures in gangliosides, such as monosialogangliosides GM1a and GM1b, disialogangliosides GD1a, GD1b and GD1c or trisialogangliosides GT1b, GT1c and GT1d, the samples were analysed after permethylation in the positive ion nanoESI-QTOFMS/MS mode, providing set of data, which allows a clear distinction for assignment of outer and inner fragment ions according to their m/z values. The fragmentation patterns from native gangliosides obtained by low-energy collision induced dissociation (CID) by nanoESI-QTOF show common behaviour and follow inherent rules. The combined set of data from the negative and positive ion mode low-energy CID can serve for the detection of structural isomers in mixtures, and to trace new, not previously detected, components.  相似文献   

15.
Gangliosides are anionic glycosphingolipids widely distributed in vertebrate tissues and fluids. Their structural and quantitative expression patterns depend on phylogeny and are distinct down to the species level. In milk, gangliosides are exclusively associated with the milk fat globule membrane. They may participate in diverse biological processes but more specifically to host-pathogen interactions. However, due to the molecular complexities, the analysis needs extensive sample preparation, chromatographic separation, and even chemical reaction, which makes the process very complex and time-consuming. Here, we describe a rapid profiling method for bovine and human milk gangliosides employing matrix-assisted desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS). Prior to the analyses of biological samples, milk ganglioside standards GM3 and GD3 fractions were first analyzed in order to validate this method. High mass accuracy and high resolution obtained from MALDI FTICR MS allow for the confident assignment of chain length and degree of unsaturation of the ceramide. For the structural elucidation, tandem mass spectrometry (MS/MS), specifically as collision-induced dissociation (CID) and infrared multiphoton dissociation (IRMPD) were employed. Complex ganglioside mixtures from bovine and human milk were further analyzed with this method. The samples were prepared by two consecutive chloroform/methanol extraction and solid phase extraction. We observed a number of differences between bovine milk and human milk. The common gangliosides in bovine and human milk are NeuAc-NeuAc-Hex-Hex-Cer (GD3) and NeuAc-Hex-Hex-Cer (GM3); whereas, the ion intensities of ganglioside species are different between two milk samples. Kendrick mass defect plot yields grouping of ganglioside peaks according to their structural similarities. Gangliosides were further probed by tandem MS to confirm the compositional and structural assignments. We found that only in human milk gangliosides was the ceramide carbon always even numbered, which is consistent with the notion that differences in the oligosaccharide and the ceramide moieties confer to their physiological distinctions.  相似文献   

16.
The hybrid ganglioside X1, which was identified in the bovine brain, was synthesized for the first time. Ganglioside X1 is believed to be involved in the development of amyotrophic lateral sclerosis-like disorders in patients with neurological disorders after treatment with bovine brain gangliosides. A convergent approach using two branched glycan units, the GM2-core trisaccharide and the lacto-ganglio tetrasaccharide, efficiently provided the highly branched heptasaccharide part of ganglioside X1, which was conjugated with the ceramide part to produce the protected ganglioside X1. Global deprotection delivered homogenous ganglioside X1, with which serum from the patient was reacted.  相似文献   

17.
A GD3-type ganglioside molecular species, LMG-4 (1), has been obtained from the polar lipid fraction of the chloroform/methanol extract of the starfish Luidia maculata. The structure of this ganglioside has been determined on the basis of chemical and spectroscopic evidence to be 1-O-[(N-acetyl-alpha-D-neuraminosyl)-(2-->8)-(N-acetyl-alpha-D-neuraminosyl)-(2-->3)-beta-D-galactopyranosyl-(1-->4)-beta-D-glucopyranosyl]-ceramide. The ceramide moiety was composed of heterogeneous 2-hydroxy fatty acid and phytosphingosine units. This is the first report on the isolation and structure elucidation of GD3-type ganglioside from echinoderms. Moreover, 1 exhibited neuritogenic activity toward the rat pheochromocytoma PC12 cells in the presence of nerve growth factor.  相似文献   

18.
Guillain-Barré syndrome is a postinfectious, autoimmune neuropathy resulting in neuromuscular paralysis. Auto-antibodies, often induced by bacterial infection, bind to human gangliosides possessing monosialoside and diasialoside epitopes and impair the function of nerve junctions, where these ganglioside structures are highly enriched. Truncated gangliosides representive of GD3, GQ1b and GM2 epitopes have been synthesized as methyl glycosides and as a glycosides of an eleven carbon tether. The synthetic oligosaccharide ligands are structural mimics of these highly complex ganglioside epitopes and via their ability to neutralize or remove auto-antibodies have the potential for therapy, either as soluble blocking ligands administered systemically, or as immuno-affinity ligands for use as extracorporeal immunoadsorbents.  相似文献   

19.
Neolacto‐series ganglioside sialylparagloboside (SPG) is a ganglioside species present in various human tissues, and used in many important studies. In this study, four ganglioside analogs, GM3, GD3, SPG, and NeuAc‐Gal‐GlcNAc‐Gal‐GlcNAc‐Gal‐Glc‐Cer, were synthesized by the saccharide‐primer method using MDCK cells and β‐lactoside primer with different aglycons. As compared to former methods for producing SPG, the primer method was rapid and convenient. Moreover, the yield of SPG was much higher than that obtained by former methods. The production of gangliosides with an azido group in the aglycon moiety was also achieved by using MDCK cells.  相似文献   

20.
The Clostridial neurotoxins, botulinum and tetanus, gain entry into motor neurons by binding to the sialic or N-acetylneuraminic acid (NeuAc) residues of gangliosides and specific protein receptors attached to the cell's surface. While the C-fragment of tetanus toxin (TetC) has been identified to be the ganglioside binding domain, remarkably little is known about how this domain discriminates between the structural features of different gangliosides. We have used electrospray ionization mass spectrometry (ESI-MS) to examine the formation of complexes between TetC and carbohydrates containing NeuAc groups to determine how NeuAc residues contribute to ganglioside binding. ESI-MS was used to obtain an estimate of the dissociation constants (KD values) for TetC binding to a number of related NeuAc-containing carbohydrates (sialyllactose and disialyllactose), as well as six (NeuAc)n oligomers (n = 1-6). KD values were found to range between approximately 10-35 microM. The strength of the interactions between the C fragment and (NeuAc)n are consistent with the topography of the targeting domain of tetanus toxin and the nature of its carbohydrate binding sites. These results suggest that the targeting domain of tetanus toxin contains two binding sites that can accommodate NeuAc (or a dimer) and that NeuAc may play an important role in ganglioside binding and molecular recognition, a process critical for normal cell function and one frequently exploited by toxins, bacteria, and viruses to facilitate their entrance into cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号