首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu J  Wang Y  Xian Y  Jin L  Tanaka K 《Talanta》2003,60(6):1123-1130
A multiwall carbon nanotubes (MWNTs) film modified electrode was prepared and used as an amperometric sensor for the simultaneous determination of oxidizable amino acids including cysteine, tryptophane and tyrosine. The electrochemical behaviors of these amino acids at this modified electrode were studied by cyclic voltammetry (CV). The results indicated that the MWNTs chemically modified electrode (CME) exhibited efficient electrocatalytic activity towards the oxidation of these amino acids with relatively high sensitivity, stability and long-life. Following separation by ion chromatography (IC) with 2.0×10−3 mol l−1 citric acid buffer solution (pH 6.5) as eluent, cysteine, tryptophane and tyrosine could be determined by the MWNTs CME successfully. Under the optimal conditions, the detection limits were 7.0×10−7 mol l−1 for cysteine, 2.0×10−7 mol l−1 for tryptophane and 3.5×10−7 mol l−1 for tyrosine at the signal-to-noise of 3, respectively. The method was applied successfully to the determination of these substances in plasma.  相似文献   

2.
The cathodic adsorptive electrochemical behavior of guanine in the presence of some metal ions at the static mercury drop electrode was investigated. A 1.0×10−3 mol l−1 NaOH or a 2.0×10−2 mol l−1 Hepes buffer at pH 8.0 solutions were used as supporting electrolytes. The reduction peak potential for guanine was found to be around −0.15 V, which is very close to the mercury reduction wave. A new peak appears at −0.60 V in the presence of copper or at −1.05 V in the presence of zinc. A square wave voltammetric procedure for electroanalytical determination of guanine in 2.0×10−2 mol l−1 Hepes buffer at pH 8.0 containing 1.6×10−5 mol l−1of copper ions, was developed. An accumulation potential of −0.15 V during 270 s for the prior adsorption of guanine at the electrode surface was used. The response of the system was found to be linear in the range of guanine concentration from 6.62×10−8 to 1.32×10−7 mol l−1 and the detection limit was 7.0×10−9 mol l−1. The influence of DNA bases such as adenine, cytosine and thymine was also examined. Cyclic voltammetry was used to characterize the interfacial and redox mechanism.  相似文献   

3.
Pei J  Li XY 《Talanta》2000,51(6):2379-1115
A thin film of mixed-valent CuPtCl6 is deposited on a glassy carbon electrode by continuous cyclic scanning in a solution containing 3×10−3 M CuCl2+3×10−3 M K2PtCl6+1 M KCl in the potential range from 700 to −800 mV. The cyclic voltammetry is used to study the electrochemical behaviors of nitrite on CuPtCl6/GC modified electrode and the electrode displays a good catalytic activity toward the oxidation of nitrite. The effects of the film thickness, pH, the electrode stability and precision have been evaluated. Experiments in flow-injection analysis are performed to characterize the electrode as an amperometric sensor for the detection of nitrite. The modified electrode shows a wide dynamic range, quite a low detection limit and short response time. The linear relationship between the flow-injection peak currents and the concentrations of nitrite is at a range of 1×10−7–2×10−3 M with a detection limit of 5×10−8 M.  相似文献   

4.
Wang Q  Li N 《Talanta》2001,55(6):243-1225
The thiolactic acid (TLA) self-assembled monolayer modified gold electrode (TLA/Au) is demonstrated to catalyze the electrochemical response of norepinephrine (NE) by cyclic voltammetry. A pair of well-defined redox waves were obtained and the calculated standard rate constant (ks) is 5.11×10−3 cm s−1 at the self-assembled electrode. The electrode reaction is a pseudo-reversible process. The peak current and the concentration of NE are a linear relationship in the range of 4.0×10−5–2.0×10−3 mol l−1. The detection limit is 2.0×10−6 mol l−1. By ac impedance spectroscopy the apparent electron transfer rate constant (kapp) of Fe(CN)3−/Fe(CN)4− at the TLA/Au electrode was obtained as 2.5×10−5 cm s−1.  相似文献   

5.
Gold nanoparticles were self-assembled to the modified glassy carbon electrode (GC) with cysteamine (CA) to prepare the nano-Au/CA/GC modified electrode. The electrochemical behavior of epinephrine (EP) on the modified electrode was explored with cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Epinephrine gave a pair of redox peaks at Epa = 0.190 mV and Epc = −0.224 mV (versus SCE), respectively. The nano-Au/CA/GC modified electrode shows an excellent electrocatalytic activity for the oxidation of EP. The modified electrode could be used to determine EP in the presence of ascorbic acid (AA). The response of catalytic current with EP concentration shows a linear relation in the range of 1.0 × 10−7 to 5.0 × 10−4 mol L−1 with the correlation coefficient of 0.998. The detection limit is 4.0 × 10−8 mol L−1. The modified electrode exhibited a good reproducibility, sensitivity and stability for the determination of EP injection.  相似文献   

6.
Amperometic flow measurements were made at +0.55 V (vs. Ag/AgCl) in 0.1 mol l−1 KOH electrolyte with an Ni(II) chemically modified electrode (CME) with an Eastman-AQ polymer film. The use and characteristics of a Ni(II)-containing crystalline and polymer-modified electrode obtained by a double coating step as a detector for amino acids in a flow-injection system using reversed-phase liquid chromatography are described. The detection of these analytes is based on the higher oxidation state of nickel (NiOOH) controlled by the applied potential. The electroanalytical parameters and the detection current for a series of amines and amino acids were investigated. The use of such a CME in the flow-injection technique was found to be suitable in a solution at low pH. The linear range for glycine is 5 × 10−6-0.1 mol l−1 with a detection limit of 1.0×10−6 mol l−1. A 1 × 10−4 mol l−1 mixture of serine and tyrosine was also detected after separation on an Nucleosil C18 column.  相似文献   

7.
A new modified carbon paste electrode (CPE) based on a recently synthesized Schiff base complex of Fe(III) as a suitable carrier for I ion is described. The electrode exhibits a super Nernstian slope of 71.0±0.3 mV per decade for I ion over a wide concentration range from 1.0×10−6 to 5.0×10−1 M, with a low detection limit of 6.5×10−7 M. It has a relatively fast response time, a satisfactory reproducibility and relatively long life time. The proposed sensor shows a fairly good selectivity toward I ion in comparison to other common anions. The potentiometric response is independent of the pH of the test solution in the pH range 3.5–10.0. Spectrophotometric studies confirmed the redox-type response mechanism of the electrode toward iodide ion. The proposed electrode was used as an indicator electrode in potentiometric titration of iodide ion.  相似文献   

8.
A chemically modified electrode is constructed based on the multi-walled carbon nanotubes (MWNTs)/4-aminobenzeresulfonic acid (4-ABSA) film-coated glassy carbon electrode. The electrocatalytic oxidation of tyrosine (Tyr) is investigated on the surface of the MWNTs/4-ABSA-modified electrode using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The prepared modified electrode shows voltammetric responses with high sensitivity and selectivity for Tyr in optimal conditions, which makes it very suitable for sub-micromolar detection of Tyr. A sensitive oxidation peak at +0.64 V is employed to determine Tyr. Good linear relationship between the oxidation peak current and the Tyr concentration in the range of 1 × 10−7 to 5 × 10−5 mol/L is obtained in phosphate buffer solution with pH 7.0. By use of modified electrode, the voltammetric detection limit for Tyr in DPV measurements is 8 × 10−8 mol/L (S/N = 3). Good sensitivity, selectivity and stability of the low-cost modified electrode make it very suitable for the determination of trace amounts of Tyr in pharmaceutical and clinical preparations.  相似文献   

9.
Fenoterol and salbutamol were determined by electrogenerated chemiluminescence (ECL) coupled with flow injection analysis (FIA), using Ru(bpy)32+ as the luminescent substance. Fenoterol and salbutamol oxidize together with the ruthenium 2,2-bipyridyl at a platinum electrode, which leads to an increase in the luminescent intensity, and this increase is proportional to the analyte concentration. For fenoterol a linear calibration curve within the range from 1.0 × 10−5 to 1.0 × 10−4 mol l−1 was obtained with a correlation coefficient of 0.998 (n = 5) and for salbutamol the linear analytical curve was also obtained in this range with a correlation coefficient of 0.995 (n = 5). The relative standard deviation was estimated as ≤2.5% for 3 × 10−5 mol l−1 for fenoterol solution and as ≤1.3% for 5.0 × 10−5 mol l−1 salbutamol solution for 15 successive injections. The limit of detection for fenoterol was 2.4 × 10−7 mol l−1 and for salbutamol was 4.0 × 10−7 mol l−1. Fenoterol and salbutamol were successfully determined in drug tablets and the soluble components of the matrix did not interfere in the luminescent emission. The results obtained using the luminescent methodology were not statistically different from those obtained by UV-spectrophotometry at 95% confidence level.  相似文献   

10.
van Staden JF  Stefan RI 《Talanta》1999,49(5):1472-1022
An on-line automated system for the simultaneous flow injection determination of calcium and fluoride in natural and borehole water with conventional calcium-selective and fluoride-selective membrane electrodes as sensors in series is described. Samples (30 μl) are injected into a TISAB II (pH=5.50) carrier solution as an ionic strength adjustment buffer. The sample-buffer zone formed is first channeled to a fluoride-selective membrane electrode and then via the calcium-selective membrane electrode to the reference electrodes. The system is suitable for the simultaneous on-site monitoring of calcium (linear range 10−5–10−2 mol l−1 detection limit 1.94×10−6 mol l−1 recovery 99.22%, RSD<0.5%) and fluoride (linear range 10−5–10−2 mol l−1 detection limit 4.83×10−6 mol l−1 recovery 98.63%, RSD=0.3%) at a sampling rate of 60 samples h−1.  相似文献   

11.
Sakai T  Liu X  Maeda Y 《Talanta》1999,49(5):913-1001
A simple, sensitive and rapid spectrophotometric method for the determination of neostigmine by flow injection analysis (FIA) coupled with an ion associate extraction has been developed. The three-line manifold was assembled. Neostigmine(200 μl) was injected into a distilled water stream and the pH was adjusted to 10 with a borate–phosphate buffer solution. Then, the stream was mixed with the ion-pairing tetrabromophenolphthalein ethylester (TBPEH)-1,2-dichloroethane solution. After phase separation with a double membrane phase separator, absorbance was measured at 610 nm. A linear calibration graph was obtained between 1×10−7 mol l−1 and 5×10−7 mol l−1 of neostigmine. Up to 48 samples h−1 could be processed with a relative standard deviation (R.S.D.) of 0.5% (n=5) for 4×10−7 mol l−1 neostigmine. The proposed system was applied to the simple, reproducible and rapid determination of neostigmine in commercial pharmaceuticals.  相似文献   

12.
The cysteamine (CA) was bound onto surface of the pretreated glassy carbon electrode (GC) with cyclic voltammetry (CV). Gold nanoparticles were self-assembled to the electrode binding with cysteamine via strong AuS covalent bond to fabricate the nano-Au self-assembled modified electrode (nano-Au/CA/GC). The modified electrode was characterized with cyclic voltammetric and ac impedance methods. The electrochemical behavior of dopamine (DA) on the modified electrode was investigated with cyclic voltammetry and differential pulse voltammetry (DPV). A well-defined redox peaks of DA on the nano-Au/CA/GC electrode were obtained at Epa = 0.175 V and Epc = 0.146 V (vs. SCE), respectively. The peak current of DA is linear with the concentration of DA in the range of 1.0 × 10−8 mol L−1 to 2.5 × 10−5 mol L−1, with the correlation coefficient of 0.998. The detection limit is 4.0 × 10−9 mol L−1 (S/N = 3). The modified electrode exhibited an excellent reproducibility, sensibility and stability for determination of DA in the presence of high concentration AA, and can be applied to determinate dopamine injection, with satisfied result.  相似文献   

13.
Huang F  Jin G  Liu Y  Kong J 《Talanta》2008,74(5):1435-1441
Phenylephrine (i.e. PHE) and chlorprothixene (i.e. CPT), two effective and important antipsychotic drugs with low redox activity, were found generating an irreversible anodic peak at about +0.89 V (vs. SCE) and +1.04 V in 0.05 M HAc–NaAc (pH 5.0) or NH2CH2COOH–HCl (pH 2.4) buffer solution at poly(4-aminobenzene sulfonic acid) modified glassy carbon electrode (i.e. poly(4-ABSA)/GC), respectively. Sensitive and quantitative measurement for them based on the anodic peaks was established under the optimum conditions. The anodic peak current was linear to PHE and CPT concentrations from 1 × 10−7 to 1.5 × 10−5 M and 2 × 10−6 to 4.5 × 10−5 M, the detection limits obtained were 1 × 10−8 and 1 × 10−7 M, separately. The modified electrode exhibited some excellent characteristics including easy regeneration, high stability, good reproducibility and selectivity. The method proposed was successfully applied to the determination of PHE and CPT in drug injections or tablets and proved to be reliable compared with ultraviolet spectrophotometry. The modified electrode was characterized by electrochemical methods.  相似文献   

14.
Zhou CL  Lu Y  Li XL  Luo CN  Zhang ZW  You JM 《Talanta》1998,46(6):1531-1536
A new method is described for the determination of antimony based on the cathodic adsorptive stripping of Sb(III) complexed with 2′,3,4′,5,7-pentahydroxyflavone(morin) at a static mercury drop electrode (SMDE). The reduction current of the adsorbed antimony complex was measured by 1.5th-order derivative linear-sweep adsorption voltammetry. The peak potential is at −0.51 V (vs. SCE). The effects of various parameters on the response are discussed. The optimized analytical conditions were found to be: supporting electrolyte, chloroacetic acid (0.04 mol/l, pH 2.3); concentration of morin, 5×10−6 mol/l; accumulation potential, −0.25 V (vs. SCE); scan rate, 100 mV/s. The limit of detection and the linear range were 7×10−10 mol/l and 1.0×10−93.0×10−7 mol/l Sb(III) for a 2-min accumulation time, respectively. This method has been applied to the determination of Sb(III) in steel and brass samples and satisfactory results were obtained. The adsorptive voltammetric characteristics and composition of the Sb(III)–morin complex were studied.  相似文献   

15.
Electrochemical studies of famotidine were carried out using voltammetric techniques: cyclic voltammetry, linear sweep and square wave adsorptive stripping voltammetry. The dependence of the current on pH, buffer concentration, nature of the buffer, and scan rate was investigated. The best results for the determination of famotidine were obtained in MOPS buffer solution at pH 6.7. This electroanalytical procedure enabled to determine famotidine in the concentration range 1 × 10−9–4 × 10−8 mol L−1 by linear sweep adsorptive stripping voltammetry (LS AdSV) and 5 × 10−10–6 × 10−8 mol L−1 by square wave adsorptive stripping voltammetry (SW AdSV). Repeatability, precision and accuracy of the developed methods were checked. The detection and quantification limits were found to be 1.8 × 10−10 and 6.2 × 10−10 mol L−1 for LS AdSV and 4.9 × 10−11 and 1.6 × 10−10 mol L−1 for SW AdSV, respectively. The method was applied for the determination of famotidine in urine.  相似文献   

16.
Zareh MM  Ghoneim AK  Abd El-Aziz MH 《Talanta》2001,54(6):1049-1057
The lipophilic ammonium salt of 1-pyrrolidine dicarbodithioic acid (PCDT)[I] was introduced as a selective ionophore for a sensitive Pb-ion selective electrode. Also, the effect of immobilization of 18-crown-6 (CW), into the above membrane, on the electrode performance was discussed. The slope of the PCDT-based [I] electrode was (26–30 mV decade−1), while it was (29-30 mV decade−1) for (PCDT+CW)-based [II] electrode according to the doping time. The linear concentration ranges were (1×10−6–1×10−1 M) and (5×10−5–1×10−1 M) for electrode types [I] and [II] after one-day doping. The working pH ranges were (5.0–10.0) and (7.0–10.0) for electrode types [I] and [II], respectively. Most of the common cations were tested for the evaluation of the electrode selectivity with correlation to the ionic radii of the tested cations. Among them only Na+, Ag+ and Fe3+ were the real interference. Application of using the electrode for the determination of lead in lubrication oil samples was performed with RSD (0.86–1.03%). The obtained results were compared to those of an atomic absorption spectrophotometric method.  相似文献   

17.
Hassan SS  Ali MM  Attawiya AM 《Talanta》2001,54(6):1153-1161
Two novel uranyl PVC matrix membrane sensors responsive to uranyl ion are described. The first sensor incorporates tris(2-ethylhexyl)phosphate (TEHP) as both electroactive material and plasticizer and sodium tetraphenylborate (NaTPB) as an ion discriminator. The sensor displays a rapid and linear response for UO22+ ions over the concentration range 1×10−1–2×10−5 mol l−1 UO22+ with a cationic slope of 25.0±0.2 mV decade−1. The working pH range is 2.8–3.6 and the life span is 4 weeks. The second sensor contains O-(1,2-dihydro-2-oxo-1-pyridyl)-N,N,N′,N′-bis(tetra-methylene)uronium hexafluorophosphate (TPTU) as a sensing material, sodium tetraphenylborate as an ion discriminator and dioctyl phenylphosphonate (DOPP) as a plasticizer. Linear and stable response for 1×10−1–5×10−5 mol l−1 UO22+ with near-Nernstian slope of 27.5±0.2 mV decade−1 are obtained. The working pH range is 2.5–3.5 and the life span of the sensor is 6 weeks. Interference from many inorganic cations is negligible for both sensors. However, interference caused by some ions (e.g. Th4+, Cu2+, Fe3+) is eliminated by a prior ion exchange or solvent extraction step. Direct potentiometric determination of as little as 5 μg ml−1 uranium in aqueous solutions shows an average recovery of 97.2±1.3%. Application for the determination of uranium at levels of 0.01–1 wt.% in naturally occurring and certified ores gives results with good correlation with data obtained by X-ray fluorescence.  相似文献   

18.
Gong X  Zhou YK  Li HL 《Talanta》2001,55(6):1103-1107
2,2,6,6-Tetramethyl-4-hydroxypiperidine-1-oxyl (TMHPO) shows catalytic electroactivity in homogeneous oxidation of benzoyl hydrazine (BH) on a glassy carbon electrode. The catalytic current is affected by the concentration of TMHPO and the pH of the solution. A possible catalytic reaction mechanism is proposed and a non-toxic, convenient method for the determination of BH in the concentration range 1×10−5–2×10−3 M has been developed.  相似文献   

19.
Mao L  Shi G  Tian Y  Liu H  Jin L  Yamamoto K  Tao S  Jin J 《Talanta》1998,46(6):1547-1556
A novel thin-layer amperometric detector (TLAD) based on chemically modified ring-disc electrode and its application for simultaneous measurements of nitric oxide (NO) and nitrite (NO2) in rat brain were demonstrated in this work. The ring-disc electrode was simultaneously sensitive to nitric oxide (NO) and nitrite (NO2) by modifying its inner disc with electropolymerized film of cobalt(II) tetraaminophthalocyanine (polyCoTAPc)/Nafion and its outer ring with poly(vinylpyridine) (PVP), respectively. The ring-disc electrode was used to constitute a novel TLAD in radial flow cell for simultaneous measurements of NO and NO2 in rat brain combined with techniques of high performance liquid chromatography (HPLC) and in vivo microdialysis. It was found that the basal concentration of NO in the caudate nucleus of rat brain is lower than 1.0×10−7 mol l−1, NO2 concentration is 5.0×10−7 mol l−1 and NO exists in brain maybe mainly in the form of its decomposed product.  相似文献   

20.
A novel electrochemical DNA biosensor based on methylene blue (MB) and zirconia (ZrO2) thin films modified gold electrode for DNA hybridization detection is presented. Zirconia thin films were electrodynamically deposited onto the bare gold electrode in an aqueous electrolyte of ZrOCl2 and KCl by cycling the potential between −1.1 and +0.7 V (versus Ag/AgCl) at a scan rate of 20 mV s−1. Oligonucleotide probes with phosphate group at the 5′ end were attached onto the zirconia thin films because zirconia is affinity for phosphoric group. The surface density of the immobilized DNA molecules at the zirconia interface was investigated by fluorescence spectroscopy method. Hybridization was induced by exposure of the ssDNA-containing Au electrode to complementary ssDNA in solution. The decreases in the peak currents of MB, an electroactive label, were observed upon hybridization of probe with the target. The cathodic peak current (ip) of MB after hybridization with the target DNA was linearly related to the logarithmic value of the target DNA concentration ranging from 2.25×10−10 to 2.25×10−8 mol l−1. A detection limit of 1.0×10−10 mol l−1 of oligonucleotides can be estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号