首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the application of the finite element method to diffusion and convection-dispersion equations over a ground-water domain, the Galerkin technique was used to incorporate Neumann (or second-type) and Cauchy (or third-type) boundary conditions. While mass movement through open boundaries is a priori unknown, these boundaries are usually treated as a zero Neumann condition at some far distance from the domain of interest. Nevertheless, cheaper and better solutions can be obtained if these unknown conditions are adequately incorporated in the weak formulation and in the transient solution schemes (open boundary condition). Theoretical and numerical proofs are given of the equivalences between this approach and a ‘well-posed’ problem in a semi-infinite domain with a zero Neumann condition at a boundary placed at infinity. Transport and diffusion equations were applied in one dimension to show the numerical performances and limitations of this procedure for some linear and non-linear problems. No a priori limitations are foreseen in order to find similar solutions in two or three dimensions. Thus the spatial discretization in the proximity of open boundaries could be drastically reduced to the domain of interest.  相似文献   

2.
We analyze the exponential decay property of solutions of the semilinear wave equation in bounded domain Ω of R^N with a damping term which is effective on the exterior of a ball and boundary conditions of the Cauchy-Ventcel type. Under suitable and natural assumptions on the nonlinearity, we prove that the exponential decay holds locally uniformly for finite energy solutions provided the nonlinearity is subcritical at infinity. Subcriticality means, roughly speaking, that the nonlinearity grows at infinity at most as a power p 〈 5. The results obtained in R^3 and RN by B. Dehman, G. Lebeau and E. Zuazua on the inequalities of the classical energy (which estimate the total energy of solutions in terms of the energy localized in the exterior of a ball) and on Strichartz's estimates, allow us to give an application to the stabilization controllability of the semilinear wave equation in a bounded domain of R^N with a subcritical nonlinearity on the domain and its boundary, and conditions on the boundary of Cauchy-Ventcel type.  相似文献   

3.
. We study the evolution of a finite number of rigid bodies within a viscous incompressible fluid in a bounded domain of with Dirichlet boundary conditions. By introducing an appropriate weak formulation for the complete problem, we prove existence of solutions for initial velocities in . In the absence of collisions, solutions exist for all time in dimension 2, whereas in dimension 3 the lifespan of solutions is infinite only for small enough data. (Accepted June 10, 1998)  相似文献   

4.
In this paper we investigate a free boundary problem for the classical Lotka–Volterra type predator–prey model with double free boundaries in one space dimension. This system models the expanding of an invasive or new predator species in which the free boundaries represent expanding fronts of the predator species and are described by Stefan-like condition. We prove a spreading–vanishing dichotomy for this model, namely the predator species either successfully spreads to infinity as \(t\rightarrow \infty \) at both fronts and survives in the new environment, or it spreads within a bounded area and dies out in the long run while the prey species stabilizes at a positive equilibrium state. The long time behavior of solution and criteria for spreading and vanishing are also obtained.  相似文献   

5.
In this paper we consider a nonlocal elasticity theory defined by Eringen’s integral model and introduce, for the first time, a boundary layer method by presenting the exponential basis functions (EBFs) for such a class of problems. The EBFs, playing the role of the fundamental solutions, are found so that they satisfy the governing equations on an unbounded domain. Some insight to the theory is given by showing that the EBFs satisfying the Navier equations in the classical elasticity theory also satisfy the governing equations in the nonlocal theory. Some additional EBFs are particularly obtained for the nonlocal theory. In order to use the EBFs on bounded domains, the effects of the boundary conditions are taken into account by truncating the kernel/attenuation function in the constitutive equations. This leads to some residuals in the governing equations which appear near the boundaries. A weighted residual approach is employed to minimize the residuals near the boundaries. The method presented in this paper has much in common with Trefftz methods especially when the influence area of the kernel function is much smaller than the main computational domain. Several one/two dimensional problems are solved to demonstrate the way in which the EBFs can be used through the proposed boundary layer method.  相似文献   

6.
The uniqueness of solutions of the Navier-Stokes equations in the whole space is established when the velocity field is bounded and the pressure field is a BMO-valued locally integrable-in-time function for bounded initial data. Here the velocity field may not decay at space infinity. Although there are a few results concerning uniqueness without the decay assumption, our result is new and applicable for solutions constructed by solving the integral equations.  相似文献   

7.
The problem of the linearized vibrations of a viscous, barotropic fluid in a bounded vessel is studied under various boundary conditions. It is shown that the essential spectrum is formed by one or two points that tend to infinity as the viscosity coefficients tend to zero. The asymptotics of solutions of the initialboundary value problem as the viscosity coefficients tend to zero is established. Some remarks about the physical properties of the associated sound waves are given.The work reported here was done with the partial support of GNAFA-CNR (Italy) and CNRS, L.A. 229 (France). In particular, E. Sanchez-Palencia has been a visiting professor of GNAFA-CNR at the Politecnico di Torino (Italy).  相似文献   

8.
A Lagrangian perturbation approach has been applied to develop the method of moments for predicting mean and variance of solute flux through a three-dimensional nonstationary flow field. The flow nonstationarity may stem from medium nonstationarity, finite domain boundaries, and/or fluid pumping and injecting. The solute flux is described as a space–time process where time refers to the solute flux breakthrough and space refers to the transverse displacement distribution at the control plane. The analytically derived moment equations for solute transport in a nonstationary flow field are too complicated to solve analytically, a numerical finite difference method is implemented to obtain the solutions. This approach combines the stochastic model with the flexibility of the numerical method to boundary and initial conditions. This method is also compared with the numerical Monte Carlo method. The calculation results indicate the two methods match very well when the variance of log-conductivity is small, but the method of moment is more efficient in computation.  相似文献   

9.
We consider asymmetric impinging jets issuing from an arbitrary nozzle. The flow is assumed to be two‐dimensional, inviscid, incompressible, and irrotational. The impinging jet from an arbitrary nozzle has a couple of separated infinite free boundaries, which makes the problem hard to solve. We formulate this problem using the stream function represented with a specific single layer potential. This potential can be extended to the surrounding region of the jet flow, and this extension can be proved to be a bounded function. Using this fact, the formulation yields the boundary integral equations on the entire nozzle and free boundary. In addition, a boundary perturbation produces an extraordinary boundary integral equation for the boundary variation. Based on these variational boundary integral equations, we can provide an efficient algorithm that can treat with the asymmetric impinging jets having arbitrarily shaped nozzles. Particularly, the proposed algorithm uses the infinite computational domain instead of a truncated one. To show the convergence and accuracy of the numerical solution, we compare our solutions with the exact solutions of free jets. Numerical results on diverse impinging jets with nozzles of various shapes are also presented to demonstrate the applicability and reliability of the algorithm.  相似文献   

10.
For any bounded (real) initial data it is known that there is a unique global solution to the two-dimensional Navier–Stokes equations. This paper is concerned with a bound for the sum of the modulus of amplitudes when initial velocity is spatially almost periodic in 2D. In the case of general dimension, it is bounded on local time of existence shown by Giga et al. (Methods Appl Anal 12:381–393,2005). A class of initial data is given such that the sum of the modulus of amplitudes of a solution is bounded on any finite time interval. It is shown by an explicit example that such a bound may diverge to infinity as the time goes to infinity at least for complex initial data.  相似文献   

11.
A fully nonlinear irregular wave tank has been developed using a three‐dimensional higher‐order boundary element method (HOBEM) in the time domain. The Laplace equation is solved at each time step by an integral equation method. Based on image theory, a new Green function is applied in the whole fluid domain so that only the incident surface and free surface are discretized for the integral equation. The fully nonlinear free surface boundary conditions are integrated with time to update the wave profile and boundary values on it by a semi‐mixed Eulerian–Lagrangian time marching scheme. The incident waves are generated by feeding analytic forms on the input boundary and a ramp function is introduced at the start of simulation to avoid the initial transient disturbance. The outgoing waves are sufficiently dissipated by using a spatially varying artificial damping on the free surface before they reach the downstream boundary. Numerous numerical simulations of linear and nonlinear waves are performed and the simulated results are compared with the theoretical input waves. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The incompressible Navier-Stokes equations—and their thermal convection and stratified flow analogue, the Boussinesq equations—possess solutions in bounded domains only when appropriate/legitimate boundary conditions (BCs) are appended at all points on the domain boundary. When the boundary—or, more commonly, a portion of it—is not endowed with a Dirichlet BC, we are faced with selecting what are called open boundary conditions (OBCs), because the fluid may presumably enter or leave the domain through such boundaries. The two minisymposia on OBCs that are summarized in this paper had the objective of finding the best OBCs for a small subset of two-dimensional test problems. This objective, which of course is not really well-defined, was not met (we believe), but the contributions obtained probably raised many more questions/issues than were resolved—notable among them being the advent of a new class of OBCs that we call FBCs (fuzzy boundary conditions).  相似文献   

13.
The governing non-linear high-order, sixth-order in space and third-order in time, differential equation is constructed for the unsteady flow of an incompressible conducting fourth-grade fluid in a semi-infinite domain. The unsteady flow is induced by a periodically oscillating two-dimensional infinite porous plate with suction/blowing, located in a uniform magnetic field. It is shown that by augmenting additional boundary conditions at infinity based on asymptotic structures and transforming the semi-infinite physical space to a bounded computational domain by means of a coordinate transformation, it is possible to obtain numerical solutions of the non-linear magnetohydrodynamic equation. In particular, due to the unsymmetry of the boundary conditions, in numerical simulations non-central difference schemes are constructed and employed to approximate the emerging higher-order spatial derivatives. Effects of material parameters, uniform suction or blowing past the porous plate, exerted magnetic field and oscillation frequency of the plate on the time-dependent flow, especially on the boundary layer structure near the plate, are numerically analysed and discussed. The flow behaviour of the fourth-grade non-Newtonian fluid is also compared with those of the Newtonian fluid.  相似文献   

14.
We study the initial boundary value problem of two-dimensional viscous Boussinesq equations over a bounded domain with smooth boundary. We show that the equations have a unique classical solution for H 3 initial data and the no-slip boundary condition. In addition, we show that the kinetic energy is uniformly bounded in time.  相似文献   

15.
We consider a quarter-plane of compressible hyperelastic material of harmonic-type undergoing finite plane deformations. The plane is subjected to mixed (free–fixed) boundary conditions. In contrast to the analogous case from classical linear elasticity, we find that the deformation field is smooth in the vicinity of the vertex and is actually bounded at the vertex itself. In particular, the normal displacement remains positive eliminating the possibility of material interpenetration. Finally, explicit expressions for Cauchy and Piola stress distributions are obtained in the vicinity of the vertex.  相似文献   

16.
We study the Navier–Stokes equations for incompressible fluids in a three-dimensional thin two-layer domain whose top, bottom and interface boundaries are not flat. In addition to the Navier friction boundary conditions on the top and bottom boundaries of the domain, and the periodicity condition on the sides, the fluid velocities are subject to an interface boundary condition which relates the normal stress of each fluid to the relative velocity between them on the common boundary. We prove that the strong solutions exist for all time if the initial data and body force, measured in relevant norms, are appropriately large as the domain becomes very thin. In our analysis, the interface boundary condition is interpreted as a variation of the Navier boundary conditions containing an interaction part. The effect of that interaction on the Stokes operator and the nonlinear term of the Navier–Stokes equations is expressed and carefully estimated in different ways in order to obtain suitable inequalities.  相似文献   

17.
We consider the two-dimensional motion of several non-homogeneous rigid bodies immersed in an incompressible non-homogeneous viscous fluid. The fluid, and the rigid bodies are contained in a fixed open bounded set of ?2. The motion of the fluid is governed by the Navier-Stokes equations for incompressible fluids and the standard conservation laws of linear and angular momentum rule the dynamics of the rigid bodies. The time variation of the fluid domain (due to the motion of the rigid bodies) is not known a priori, so we deal with a free boundary value problem. The main novelty here is thedemonstration of the global existence of weak solutions for this problem. More precisely, the global character of the solutions we obtain is due to the fact that we do not need any assumption concerning the lack of collisions between several rigid bodies or between a rigid body and the boundary. We give estimates of the velocity of the bodies when their mutual distance or the distance to the boundary tends to zero.  相似文献   

18.
A mixed boundary element and finite element numerical algorithm for the simultaneous prediction of the electric fields, viscous flow fields, thermal fields and surface deformation of electrically conducting droplets in an electrostatic field is described in this paper. The boundary element method is used for the computation of the electric potential distribution. This allows the boundary conditions at infinity to be directly incorporated into the boundary integral formulation, thereby obviating the need for discretization at infinity. The surface deformation is determined by solving the normal stress balance equation using the weighted residuals method. The fluid flow and thermal fields are calculated using the mixed finite element method. The computational algorithm for the simultaneous prediction of surface deformation and fluid flow involves two iterative loops, one for the electric field and surface deformation and the other for the surface tension driven viscous flows. The two loops are coupled through the droplet surface shapes for viscous fluid flow calculations and viscous stresses for updating the droplet shapes. Computing the surface deformation in a separate loop permits the freedom of applying different types of elements without complicating procedures for the internal flow and thermal calculations. Tests indicate that the quadratic, cubic spline and spectral boundary elements all give approximately the same accuracy for free surface calculations; however, the quadratic elements are preferred as they are easier to implement and also require less computing time. Linear elements, however, are less accurate. Numerical simulations are carried out for the simultaneous solution of free surface shapes and internal fluid flow and temperature distributions in droplets in electric fields under both microgravity and earthbound conditions. Results show that laser heating may induce a non-uniform temperature distribution in the droplets. This non-uniform thermal field results in a variation of surface tension along the surface of the droplet, which in turn produces a recirculating fluid flow in the droplet. The viscous stresses cause additional surface deformation by squeezing the surface areas above and below the equator plane.  相似文献   

19.
Steady, laminar, fully developed flows of a Newtonian fluid driven by a constant pressure gradient in (1) a curvilinear constant cross section triangle bounded by two straight no-slip segments and a circular meniscus and (2) a wedge bounded by two rays and an adjacent film bulging near the corner are studied analytically by the theory of holomorphic functions and numerically by finite elements. The analytical solution of the first problem is obtained by reducing the Poisson equation for the longitudinal flow velocity to the Laplace equation, conformal mapping of the corresponding transformed physical domain onto an auxiliary half-plane and solving there the Signorini mixed boundary value problem (BVP). The numerical solution is obtained by meshing the circular sector and solving a system of linear equations ensuing from the Poisson equation. Comparisons are made with known solutions for flows in a rectangular conduit, circular annulus and Philip’s circular duct with a no-shear sector. Problem (2) is treated by the Saint-Venant semi-inverse method: the free surface (quasi-meniscus) is reconstructed by a one-parametric family, which specifies a holomorphic function of the first derivative of the physical coordinate with respect to an auxiliary variable. The latter maps the flow domain onto a quarter of a unit disc where a mixed BVP for a characteristic function is solved by the Zhukovsky–Chaplygin method. Velocity distributions in a cross section perpendicular to the flow direction are obtained. It is shown that the change of the type of the boundary condition from no slip to perfect slip (along the meniscus) causes a dramatic increase of the total flow rate (conductance). For example, the classical Saint-Venant formulae for a sector, with all three boundaries being no-slip segments, predict up to four times smaller rate as compared to a free surface meniscus. Mathematically equivalent problems of unconfined flows in aquifers recharged by a constant-intensity infiltration are also addressed.  相似文献   

20.
We investigate the asymptotic behavior of solutions of linear differential equations with almost constant coefficients and pulse action at fixed times as t tends to infinity. We establish conditions for the times of pulse action under which there exist values of pulse action for which the solution of the considered Cauchy problem with initial conditions that coincide with the initial conditions for a certain (arbitrary but fixed) solution of the original equation without pulse action is bounded, unbounded, or tending to infinity. __________ Translated from Neliniini Kolyvannya, Vol. 8, No. 4, pp. 444–455, October–December, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号