首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Redox reactions involving the [Cu(dmp)2]2+/+ couple (dmp = 2,9-dimethyl-1,10-phenanthroline) in acetonitrile were examined at elevated pressures up to 200 MPa. Activation volumes were determined as -8.8 and -6.3 cm3 mol-1 for the reduction cross-reaction by [Co(bipy)3]2+ (bipy = 2,2'-bipyridine) and for the oxidation cross-reaction by [Ni(tacn)2]3+ (tacn = 1,4,7-triazacyclononane), respectively. The activation volume for the hypothetical gated mode of the self-exchange reaction estimated from the reduction cross-reaction was -13.9 cm3 mol-1, indicating extensive electrostrictive rearrangement of solvent molecules around the CuII complex during the change in the coordination geometry before the electron-transfer step. On the other hand, the activation volume for the self-exchange reaction estimated from the oxidation cross-reaction was -2.7 +/- 1.5 cm3 mol-1. Although this value was within the range that can be interpreted by the concept of the ordinary concerted process, from theoretical considerations it was concluded that the reverse (oxidation) cross-reaction of the gated reduction reaction of the [Cu(dmp)2(CH3CN)]2+/[Cu(dmp)2]+ couple proceeds through the product excited state while the direct self-exchange reaction between [Cu(dmp)2(CH3CN)]2+ and [Cu(dmp)2]+ proceeds through an ordinary concerted process.  相似文献   

2.
The crystal structures of two new metal-cyanide clusters with record high nuclearities are reported. A direct assembly reaction involving [(Me(3)tacn)Cr(CN)(3)] (Me(3)tacn = N,N',N"-trimethyl-1,4,7-triazacyclononane), NiI(2), and KCN in aqueous solution affords [(Me(3)tacn)(12)Cr(12)Ni(12)(CN)(48)](12+). The structure of this 24-metal cluster features a cube of eight Cr(III) centers linked along the edges by 12 trans-coordinated [Ni(CN)(4)](2)(-) units, and capped on four faces by [(Me(3)tacn)Cr](3+) moieties. Its metal-cyanide cage encloses a 900 A(3) cavity that is accessible through the two noncapped cube faces. A still larger cluster, [(Me(3)tacn)(14)Cr(14)Ni(13)(CN)(48)](20+), was obtained from a related reaction excluding the addition of KCN. This 27-metal species possesses a highly anisotropic geometry in which two face-centered cubic units are fused through a common Ni(II) vertex.  相似文献   

3.
The first chainlike germanate, [Ge(7)O(13)(OH)(2)F(3)](3)(-).Cl(-).2[Ni(dien)(2)](2+), has been solvothermally synthesized by using Ni(dien)(2)(2+) cations as the template and characterized by IR, SEM, TGA, powder X-ray diffraction (PXRD), energy-dispersive X-ray analysis (EDXA), elemental analysis, and single-crystal X-ray diffraction, respectively. This compound crystallized in the monoclinic space group P2/nwith a = 8.8904(2) A, b = 17.4374(3) A, c = 13.2110(3) A, beta = 101.352(1) degrees, V = 2007.97(7) A(3), and Z = 2. Interestingly, the structure contains two types of chiral mer-[Ni(dien)(2)](2+) cations and two types of chiral chains, one left-handed and the other right-handed, which lead to a racemic compound. The orderly separation of achiral s-fac-[Ni(dien)(2)](2+) and chiral mer-[Ni(dien)(2)](2+) isomers was found in the structure. The structure is stabilized by N-H.O(F, Cl) hydrogen bonds.  相似文献   

4.
Kinetic studies of cyanide exchange on [M(CN)(4)](2-) square-planar complexes (M = Pt, Pd, and Ni) were performed as a function of pH by (13)C NMR. The [Pt(CN)(4)](2-) complex has a purely second-order rate law, with CN(-) as acting as the nucleophile, with the following kinetic parameters: (k(2)(Pt,CN))(298) = 11 +/- 1 s(-1) mol(-1) kg, DeltaH(2) (Pt,CN) = 25.1 +/- 1 kJ mol(-1), DeltaS(2) (Pt,CN) = -142 +/- 4 J mol(-1) K(-1), and DeltaV(2) (Pt,CN) = -27 +/- 2 cm(3) mol(-1). The Pd(II) metal center has the same behavior down to pH 6. The kinetic parameters are as follows: (k(2)(Pd,CN))(298) = 82 +/- 2 s(-1) mol(-1) kg, DeltaH(2) (Pd,CN) = 23.5 +/- 1 kJ mol(-1), DeltaS(2) (Pd,CN) = -129 +/- 5 J mol(-1) K(-1), and DeltaV(2) (Pd,CN) = -22 +/- 2 cm(3) mol(-1). At low pH, the tetracyanopalladate is protonated (pK(a)(Pd(4,H)) = 3.0 +/- 0.3) to form [Pd(CN)(3)HCN](-). The rate law of the cyanide exchange on the protonated complex is also purely second order, with (k(2)(PdH,CN))(298) = (4.5 +/- 1.3) x 10(3) s(-1) mol(-1) kg. [Ni(CN)(4)](2-) is involved in various equilibrium reactions, such as the formation of [Ni(CN)(5)](3-), [Ni(CN)(3)HCN](-), and [Ni(CN)(2)(HCN)(2)] complexes. Our (13)C NMR measurements have allowed us to determine that the rate constant leading to the formation of [Ni(CN)(5)](3-) is k(2)(Ni(4),CN) = (2.3 +/- 0.1) x 10(6) s(-1) mol(-1) kg when the following activation parameters are used: DeltaH(2)() (Ni,CN) = 21.6 +/- 1 kJ mol(-1), DeltaS(2) (Ni,CN) = -51 +/- 7 J mol(-1) K(-1), and DeltaV(2) (Ni,CN) = -19 +/- 2 cm(3) mol(-1). The rate constant of the back reaction is k(-2)(Ni(4),CN) = 14 x 10(6) s(-1). The rate law pertaining to [Ni(CN)(2)(HCN)(2)] was found to be second order at pH 3.8, and the value of the rate constant is (k(2)(Ni(4,2H),CN))(298) = (63 +/- 15) x10(6) s(-1) mol(-1) kg when DeltaH(2) (Ni(4,2H),CN) = 47.3 +/- 1 kJ mol(-1), DeltaS(2) (Ni(4,2H),CN) = 63 +/- 3 J mol(-1) K(-1), and DeltaV(2) (Ni(4,2H),CN) = - 6 +/- 1 cm(3) mol(-1). The cyanide-exchange rate constant on [M(CN)(4)](2-) for Pt, Pd, and Ni increases in a 1:7:200 000 ratio. This trend is modified at low pH, and the palladium becomes 400 times more reactive than the platinum because of the formation of [Pd(CN)(3)HCN](-). For all cyanide exchanges on tetracyano complexes (A mechanism) and on their protonated forms (I/I(a) mechanisms), we have always observed a pure second-order rate law: first order for the complex and first order for CN(-). The nucleophilic attack by HCN or solvation by H(2)O is at least nine or six orders of magnitude slower, respectively than is nucleophilic attack by CN(-) for Pt(II), Pd(II), and Ni(II), respectively.  相似文献   

5.
The substitution of Mo(III) for Cr(III) in metal-cyanide clusters is demonstrated as an effective means of increasing the strength of the magnetic exchange coupling and introducing magnetic anisotropy. Synthesis of the octahedral complex [(Me(3)tacn)Mo(CN)(3)] (Me(3)tacn = N,N',N"-trimethyl-1,4,7-triazacyclononane) is accomplished with the addition of precisely 3 equiv of LiCN to a solution of [(Me(3)tacn)Mo(CF(3)SO(3))(3)] in DMF. An excess of LiCN prompts formation of a seven-coordinate complex, [(Me(3)tacn)Mo(CN)(4)](1)(-), whereas less LiCN produces multinuclear species such as [(Me(3)tacn)(2)Mo(2)(CN)(5)](1+). In close parallel to reactions previously performed with [(Me(3)tacn)Cr(CN)(3)], assembly reactions between [(Me(3)tacn)Mo(CN)(3)] and [Ni(H(2)O)(6)](2+) or [(cyclam)Ni(H(2)O)(2)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) afford face-centered cubic [(Me(3)tacn)(8)Mo(8)Ni(6)(CN)(24)](12+) and linear [(Me(3)tacn)(2)(cyclam)NiMo(2)(CN)(6)](2+) clusters, respectively. Generation of the former involves a thermally induced cyanide linkage isomerization, which rapidly leads to a low-spin form of the cluster containing diamagnetic Ni(II) centers. The cyclic voltammagram of this species in DMF reveals a sequence of six successive reduction waves spaced approximately 130 mV apart, suggesting class II mixed-valence behavior upon reduction. The magnetic properties of the aforementioned linear cluster are consistent with the expected ferromagnetic coupling and an S = 4 ground state, but otherwise vary slightly with the specific conformation adopted (as influenced by the packing of associated counteranions and solvate molecules in the crystal). Magnetization data indicate an axial zero-field splitting parameter with a magnitude falling in the range [D] = 0.44-0.72 cm(-1), and fits to the magnetic susceptibility data yield exchange coupling constants in the range J = 17.0-17.6 cm(-1). These values represent significant increases over those displayed by the analogous Cr(III)-containing cluster. When perchlorate is used as a counteranion, [(Me(3)tacn)(2)(cyclam)NiMo(2)(CN)(6)](2+) crystallizes from water in a dimeric form with pairs of the linear clusters directly linked via hydrogen bonding. In this case, fitting the magnetic susceptibility data requires use of two coupling constants: one intramolecular with J = 14.9 cm(-1) and another intermolecular with J' = -1.9 cm(-1). Reacting [(Me(3)tacn)Mo(CN)(3)] with a large excess of [(cyclam)Ni(H(2)O)(2)](2+) produces a [(Me(3)tacn)(2)(cyclam)(3)(H(2)O)(2)Ni(3)Mo(2)(CN)(6)](6+) cluster possessing a zigzag structure that is a simple extension of the linear cluster geometry. Its magnetic behavior is consistent with weaker ferromagnetic coupling and an S = 6 ground state. Similar reactions employing an equimolar ratio of reactants afford related one-dimensional chains of formula [(Me(3)tacn)(cyclam)NiMo(CN)(3)](2+). Once again, the ensuing structure depends on the associated counteranions, and the magnetic behavior indicates ferromagnetic coupling. It is hoped that substitutions of the type exemplified here will be of utility in the design of new single-molecule magnets.  相似文献   

6.
Humbs W  Yersin H 《Inorganic chemistry》1996,35(8):2220-2228
Highly resolved emission, excitation, and resonantly line-narrowed spectra, as well as emission decay properties of [Rh(bpy-h(8))(n)(bpy-d(8))(3-n)](3+) (n = 0, 2, 3; bpy = 2,2'-bipyridine) doped into [Zn(bpy-h(8))(3)](ClO(4))(2) are presented for the first time. [Rh(bpy-h(8))(3)](3+) and [Rh(bpy-d(8))(3)](3+) exhibit one low-lying triplet T(1) at 22 757 +/- 1 and 22 818 +/- 1 cm(-1), respectively (blue shift 61 cm(-1)), while [Rh(bpy-h(8))(2)(bpy-d(8))](3+) has two low-lying triplets at 22 757 +/- 1 and 22 818 +/- 1 cm(-1). The well-resolved vibrational satellite structures show, that the equilibrium positions of the triplet and the singlet ground S(0) state are not very different and that the force constants in T(1) are mostly slightly smaller than in S(0). Moreover, the vibrational satellite structure is strongly dominated by vibrational ligand modes, which demonstrates the pipi character of the corresponding transition. However, the occurrence of several very weak vibrational modes of metal-ligand character displays a small influence of the metal ion. This is supported by the emission decay behavior. [Rh(bpy-h(8))(2)(bpy-d(8))](3+) exhibits an emission which is clearly assignable to the protonated ligand(s), even when the deuterated ligand is selectively excited. Obviously, an efficient intramolecular energy transfer from the deuterated to the protonated ligand(s) occurs, presumably mediated by the small Rh(3+) d-admixture. A so-called "dual emission" is not observed. Moreover, a series of spectroscopic properties of the lowest excited state of [Rh(bpy)(3)](3+) (energies of electronic origins, emission decay times, zero-field splittings, structures of vibrational satellites, etc.) is compared to properties of bpy, [Pt(bpy)(2)](2+), [Ru(bpy)(3)](2+), and [Os(bpy)(3)](2+). This comparison displays in a systematic way the increasing importance of the metal d and/or MLCT character for the lowest excited states and thus provides guidelines for an experimentally based classification. In particular, the lowest excited states of [Rh(bpy)(3)](3+) may be ascribed as being mainly of (3)pipi character confined to one ligand in contrast to the situation found for [Ru(bpy)(3)](2+) where these states are covalently delocalized over the whole complex.  相似文献   

7.
Deeth RJ  Elding LI 《Inorganic chemistry》1996,35(17):5019-5026
Density functional theory is applied to modeling the exchange in aqueous solution of H(2)O on [Pd(H(2)O)(4)](2+), [Pt(H(2)O)(4)](2+), and trans-[PtCl(2)(H(2)O)(2)]. Optimized structures for the starting molecules are reported together with trigonal bipyramidal (tbp) systems relevant to an associative mechanism. While a rigorous tbp geometry cannot by symmetry be the actual transition state, it appears that the energy differences between model tbp structures and the actual transition states are small. Ground state geometries calculated via the local density approximation (LDA) for [Pd(H(2)O)(4)](2+) and relativistically corrected LDA for the Pt complexes are in good agreement with available experimental data. Nonlocal gradient corrections to the LDA lead to relatively inferior structures. The computed structures for analogous Pd and Pt species are very similar. The equatorial M-OH(2) bonds of all the LDA-optimized tbp structures are predicted to expand by 0.25-0.30 ?, while the axial bonds change little relative to the planar precursors. This bond stretching in the transition state counteracts the decrease in partial molar volume caused by coordination of the entering water molecule and can explain qualitatively the small and closely similar volumes of activation observed. The relatively higher activation enthalpies of the Pt species can be traced to the relativistic correction of the total energies while the absolute DeltaH() values for exchange on [Pd(H(2)O)(4)](2+) and [Pt(H(2)O)(4)](2+) are reproduced using relativistically corrected LDA energies and a simple Born model for hydration. The validity of the latter is confirmed via some simple atomistic molecular mechanics estimates of the relative hydration enthalpies of [Pd(H(2)O)(4)](2+) and [Pd(H(2)O)(5)](2+). The computed DeltaH() values are 57, 92, and 103 kJ/mol compared to experimental values of 50(2), 90(2), and 100(2) kJ/mol for [Pd(H(2)O)(4)](2+), [Pt(H(2)O)(4)](2+), and trans-[PtCl(2)(H(2)O)(2)], respectively. The calculated activation enthalpy for a hypothetical dissociative water exchange at [Pd(H(2)O)(4)](2+) is 199 kJ/mol. A qualitative analysis of the modeling procedure, the relative hydration enthalpies, and the zero-point and finite temperature corrections yields an estimated uncertainty for the theoretical activation enthalpies of about 15 kJ/mol.  相似文献   

8.
The mechanisms for the exchange of water between [UO(2)(H(2)O)(5)](2+), [UO(2)(oxalate)(2)(H(2)O)](2)(-)(,) and water solvent along dissociative (D), associative (A) and interchange (I) pathways have been investigated with quantum chemical methods. The choice of exchange mechanism is based on the computed activation energy and the geometry of the identified transition states and intermediates. These quantities were calculated both in the gas phase and with a polarizable continuum model for the solvent. There is a significant and predictable difference between the activation energy of the gas phase and solvent models: the energy barrier for the D-mechanism increases in the solvent as compared to the gas phase, while it decreases for the A- and I-mechanisms. The calculated activation energy, Delta U(++), for the water exchange in [UO(2)(H(2)O)(5)](2+) is 74, 19, and 21 kJ/mol, respectively, for the D-, A-, and I-mechanisms in the solvent, as compared to the experimental value Delta H(++) = 26 +/- 1 kJ/mol. This indicates that the D-mechanism for this system can be ruled out. The energy barrier between the intermediates and the transition states is small, indicating a lifetime for the intermediate approximately 10(-10) s, making it very difficult to distinguish between the A- and I-mechanisms experimentally. There is no direct experimental information on the rate and mechanism of water exchange in [UO(2)(oxalate)(2)(H(2)O)](2-) containing two bidentate oxalate ions. The activation energy and the geometry of transition states and intermediates along the D-, A-, and I-pathways were calculated both in the gas phase and in a water solvent model, using a single-point MP2 calculation with the gas phase geometry. The activation energy, Delta U(++), in the solvent for the D-, A-, and I-mechanisms is 56, 12, and 53 kJ/mol, respectively. This indicates that the water exchange follows an associative reaction mechanism. The geometry of the A- and I-transition states for both [UO(2)(H(2)O)(5)](2+) and [UO(2)(oxalate)(2)(H(2)O)](2-) indicates that the entering/leaving water molecules are located outside the plane formed by the spectator ligands.  相似文献   

9.
X-ray crystal structures are reported for the following complexes: [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O (tacn = 1,4,7-triazacyclononane), monoclinic P2(1)/n, Z = 4, a = 14.418(8) ?, b = 11.577(3) ?, c = 18.471(1) ?, beta = 91.08(5) degrees, V = 3082 ?(3), R(R(w)) = 0.039 (0.043) using 4067 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, monoclinic P2(1)/a, Z = 4, a = 13.638(4) ?, b = 12.283(4) ?, c = 18.679(6) ?, beta = 109.19(2) degrees, V = 3069.5 ?(3), R(R(w)) = 0.052 (0.054) using 3668 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)I(3)(tacn)(2)](PF(6))(2), cubic P2(1)/3, Z = 3, a = 14.03(4) ?, beta = 90.0 degrees, V = 2763.1(1) ?(3), R (R(w)) = 0.022 (0.025) using 896 unique data with I > 2.5sigma(I) at 293 K. All of the cations have cofacial bioctahedral geometries, although [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O, [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, and [Ru(2)I(3)(tacn)(2)](PF(6))(2) are not isomorphous. Average bond lengths and angles for the cofacial bioctahedral cores, [N(3)Ru(&mgr;-X)(3)RuN(3)](2+), are compared to those for the analogous ammine complexes [Ru(2)Cl(3)(NH(3))(6)](BPh(4))(2) and [Ru(2)Br(3)(NH(3))(6)](ZnBr(4)). The Ru-Ru distances in the tacn complexes are longer than those in the equivalent ammine complexes, probably as a result of steric interactions.  相似文献   

10.
The pentadentate ligand 14-oxa-1,4,8,11-tetraazabicyclo[9.5.3]nonadecane (L1) has been synthesized by the high dilution cyclization of 1-oxa-4,8-diazacyclododecane ([10]aneN(2)O) (1) with 1,3-bis(alpha-chloroacetamido)propane (2) and subsequent reduction of the diamide intermediate. The structure [Ni(L1)(ClO(4))](ClO(4)) (P2(1)/c (no. 14), a = 8.608(3), b = 16.618(3), c = 14.924(4) A, beta = 91.53(3) degrees converged at R = 0.050 (R(w) = 0.046) for 307 parameters using 2702 reflections with I > 2sigma(I). For the nickel(II) complex of the (monodeprotonated) precursor diamide ligand 14-oxa-1,4,8,11-tetraazabicyclo[9.5.3]nonadecane-3,9-dione (H(2)L2), [Ni(HL2)](ClO(4)) (Pbca (no. 61), a = 15.1590(3), b = 13.235(2), c = 18.0195(6) A), the structure converged at R = 0.045 (R(w) = 0.038) for 265 parameters using 1703 reflections with I > 3sigma(I). In the reduced system, the cyclam-based ligand adopts a trans-III configuration. The [Ni(L1)(ClO(4))](2+) ion is pseudooctahedral with the Ni-O(ether) 2.094(3) A distance shorter than the Ni-O(perchlorate) 2.252(4) A. The nickel(II) and nickel(III) complexes are six-coordinate in solution. Oxidation of [Ni(L1)(OH(2))](2+) with K(2)S(2)O(8) in aqueous media yielded an axial d(7) Ni(III) species (g( perpendicular) = 2.159 and g( perpendicular) = 2.024 at 77 K). The [Ni(L1)(solv)](2+) ion in CH(3)CN showed two redox waves, Ni(II/I) (an irreversible cathodic peak, E(p,c) = -1.53 V) and Ni(III/II) (E(1/2) = 0.85 V (reversible)) vs Ag/Ag(+). The complex [Ni(HL2)](ClO(4)) displays square-planar geometry with monodeprotonation of the ligand. The ether oxygen is not coordinated. Ni-O(3) = 2.651(6) A and Ni-O(3a) = 2.451(12) A, respectively. The Ni(III/II) oxidation at E(1/2) = 0.24 V (quasi-reversible) vs Ag/Ag(+) is considerably lower than the saturated system. The kinetics of Cl(-) substitution at [Ni(L1)(solv)](3+) are pH dependent. Detachment of the ether oxygen atom is proposed, with insertion of a protonated water molecule which deprotonates at a pK(a) more acidic than in the corresponding cyclam complex. Mechanistic implications are discussed.  相似文献   

11.
The lability and structural dynamics of [Fe(II)(edta)(H(2)O)](2-) (edta = ethylenediaminetetraacetate) in aqueous solution strongly depend on solvent interactions. To study the solution structure and water-exchange mechanism, (1)H, (13)C, and (17)O NMR techniques were applied. The water-exchange reaction was studied through the paramagnetic effect of the complex on the relaxation rate of the (17)O nucleus of the bulk water. In addition to variable-temperature experiments, high-pressure NMR techniques were applied to elucidate the intimate nature of the water-exchange mechanism. The water molecule in the seventh coordination site of the edta complex is strongly labilized, as shown by the water-exchange rate constant of (2.7 +/- 0.1) x 106 s(-1) at 298.2 K and ambient pressure. The activation parameters DeltaH(not equal), DeltaS(not equal), and DeltaV(not equal) were found to be 43.2 +/- 0.5 kJ mol(-1), +23 +/- 2 J K(-1) mol(-1), and +8.6 +/- 0.4 cm(3) mol(-1), respectively, in line with a dissociatively activated interchange (Id) mechanism. The scalar coupling constant (A/h) for the Fe(II)-O interaction was found to be 10.4 MHz, slightly larger than the value A/h = 9.4 MHz for this interaction in the hexa-aqua Fe(II) complex. The solution structure and dynamics of [Fe(II)(edta)(H(2)O)](2-) were clarified by (1)H and (13)C NMR experiments. The complex undergoes a Delta,Lambda-isomerization process with interconversion of in-plane (IP) and out-of-plane (OP) positions. Acetate scrambling was also found in an NMR study of the corresponding NO complex, [Fe(III)(edta)(NO(-))](2-).  相似文献   

12.
A procedure is given for correcting optical absorbance measurements made at variable pressure with a le Noble-Schlott ("pillbox") cell for the inner sleeve wall thickness. With this technique, the molar volume change for the acid ionization of aqueous [Cr(Hedta)OH(2)] was found to be +5.1 +/- 0.6 cm(3) mol(-)(1) (0-200 MPa, 25.0 degrees C, ionic strength 1.0 mol L(-)(1) HClO(4)/NaClO(4)), an anomalous positive value which implies a change from quinquedentate to predominantly sexidentate edta and expulsion of the coordinated water on ionization. For thiocyanate substitution into labile [Cr(Hedta)OH(2)], high pressure stopped-flow measurements gave the volume of activation as -7.8 +/- 0.9 cm(3) mol(-)(1) and the volume of reaction as +3 +/- 2 cm(3) mol(-)(1), while for the reaction of [Cr(edta)](-) with NCS(-) the activation volume is -13.6 +/- 0.6 cm(3) mol(-)(1) (same conditions). These and other data support the notion that the anomalous substitutional lability of Cr(III)(edta) complexes relative to typical Cr(III) species is due to activation by transient chelation of the pendant arm of quinquedentate edta.  相似文献   

13.
A series of new heterometallic coordination polymers has been prepared from the reaction of metal-ligand cations and KAg(CN)(2) units. Many of these contain silver-silver (argentophilic) interactions, analogous to gold-gold interactions, which serve to increase supramolecular structural dimensionality. Compared to [Au(CN)(2)](-) analogues, these polymers display new trends specific to [Ag(CN)(2)](-), including the formation of [Ag(2)(CN)(3)](-) and the presence of Ag...N interactions. [Cu(en)(2)][Ag(2)(CN)(3)][Ag(CN)(2)] (1, en = ethylenediamine) forms 1-D chains of alternating [Ag(CN)(2)](-) and [Ag(2)(CN)(3)](-) units via argentophilic interactions of 3.102(1) A. These chains are connected into a 2-D array by strong cyano(N)-Ag interactions of 2.572(3) A. [Cu(dien)Ag(CN)(2)](2)[Ag(2)(CN)(3)][Ag(CN)(2)] (2, dien = diethylenetriamine) forms a 1-D chain of alternating [Cu(dien)](2+) and [Ag(CN)(2)](-) ions with the Cu(II) atoms connected in an apical/equatorial fashion. These chains are cross-linked by [Ag(2)(CN)(3)](-) units via argentophilic interactions of 3.1718(8) A and held weakly in a 3-D array by argentophilic interactions of 3.2889(5) A between the [Ag(CN)(2)](-) in the 2-D array and the remaining free [Ag(CN)(2)](-). [Ni(en)][Ni(CN)(4)].2.5H(2)O (4) was identified as a byproduct in the reaction to prepare the previously reported [Ni(en)(2)Ag(2)(CN)(3)][Ag(CN)(2)] (3). In [Ni(tren)Ag(CN)(2)][Ag(CN)(2)] (5, tren = tris(2-aminoethyl)amine), [Ni(tren)](2+) cations are linked in a cis fashion by [Ag(CN)(2)](-) anions to form a 1-D chain similar to the [Au(CN)(2)](-) analogue. [Cu(en)Cu(CN)(2)Ag(CN)(2)] (6) is a trimetallic polymer consisting of interpenetrating (6,3) nets stabilized by d(10)-d(10) interactions between Cu(I)-Ag(I) (3.1000(4) A). Weak antiferromagnetic coupling has been observed in 2, and a slightly stronger exchange has been observed in 6. The Ni(II) complexes, 4 and 5, display weak antiferromagnetic interactions as indicated by their relatively larger D values compared to that of 3. Magnetic measurements on isostructural [Ni(tren)M(CN)(2)][M(CN)(2)] (M = Ag, Au) show that Ag(I) is a more efficient mediator of magnetic exchange as compared to Au(I). The formation of [Ni(CN)(4)](2)(-), [Ag(2)(CN)(3)](-), and [Cu(CN)(2)](-) are all attributed to secondary reactions of the dissociation products of the labile KAg(CN)(2).  相似文献   

14.
The oxidations of benzyl alcohol, PPh3, and the sulfides (SEt2 and SPh2) (Ph = phenyl and Et = ethyl) by the Os(VI)-hydrazido complex trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) (tpy = 2,2':6',2' '-terpyridine and O(CH2)4N(-) = morpholide) have been investigated in CH3CN solution by UV-visible monitoring and product analysis by gas chromatography-mass spectrometry. For benzyl alcohol and the sulfides, the rate law for the formation of the Os(V)-hydrazido complex, trans-[Os(V)(tpy)(Cl)2(NN(CH2)4O)](+), is first order in both trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) and reductant, with k(benzyl) (25.0 +/- 0.1 degrees C, CH3CN) = (1.80 +/- 0.07) x 10(-4) M(-1) s(-1), k(SEt2) = (1.33 +/- 0.02) x 10(-1) M(-1) s(-1), and k(SPh2) = (1.12 +/- 0.05) x 10(-1) M(-1) s(-1). Reduction of trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) by PPh3 is rapid and accompanied by isomerization and solvolysis to give the Os(IV)-hydrazido product, cis-[Os(IV)(tpy)(NCCH3)2(NN(CH2)4O)](2+), and OPPh3. This reaction presumably occurs by net double Cl-atom transfer to PPh3 to give Cl2PPh3 that subsequently undergoes hydrolysis by trace H2O to give the final product, OPPh3. In the X-ray crystal structure of the Os(IV)-hydrazido complex, the Os-N-N angle of 130.9(5) degrees and the Os-N bond length of 1.971(7) A are consistent with an Os-N double bond.  相似文献   

15.
Comparisons (25 degrees C) are made of substitution reactions, X replacing H(2)O, at the tetrahedral Ni of the heterometallic sulfido cuboidal cluster [Mo(3)NiS(4)(H(2)O)(10)](4+), I = 2.00 M (LiClO(4)). Stopped-flow formation rate constants (k(f)/M(-)(1) s(-)(1)) for six X reagents, including two water soluble air-stable phosphines, 1,3,5-triaza-7-phosphaadamantane PTA (119) and tris(3-sulfonatophenyl)phosphine TPPTS(3)(-) (58), and CO (0.66), Br(-) (14.6), I(-) (32.3), and NCS(-) (44) are reported alongside the previous value for Cl(-) (9.4). A dependence on [H(+)] is observed with PTA, which gives an unreactive form confirmed by NMR as N-protonated PTA (acid dissociation constant K(a) = 0.61 M), but in no other cases with [H(+)] in the range 0.30-2.00 M. The narrow spread of rate constants for all but the CO reaction is consistent with an I(d) dissociative interchange mechanism. In addition NMR studies with H(2)(17)O enriched solvent are too slow for direct determination of the water-exchange rate constant indicating a value <10(3) s(-)(1). Equilibrium constants/M(-)(1) for 1:1 complexing with the different X groups at the Ni are obtained for PTA (2040) and TPPTS(3)(-) (8900) by direct spectrophotometry and from kinetic studies (k(f)/k(b)) for Cl(-) (97), Br(-) (150), NCS(-) (690), and CO (5150). No NCS(-) substitution at the Ni is observed in the case of the heterometallic cube [Mo(3)Ni(L)S(4)(H(2)O)(9)](4+), with tridentate 1,4,7-triazacyclononane(L) coordinated to the Ni. Substitution of NCS(-) for H(2)O, at the Mo's of [Mo(3)NiS(4)(H(2)O)(10)](4+) and [Mo(3)(NiL)S(4)(H(2)O)(9)](4+) are much slower secondary processes, with k(f) = 2.7 x 10(-)(4) M(-)(1) s(-)(1) and 0.94 x 10(-)(4) M(-)(1) s(-)(1) respectively. No substitution of H(2)O by TPPTS(3)(-) or CO is observed over approximately 1h at either metal on [Mo(3)FeS(4)(H(2)O)(10)](4+), on [Mo(4)S(4)(H(2)O)(12)](5+) or [Mo(3)S(4)(H(2)O)(9)](4+).  相似文献   

16.
Homogeneous electron transfer reactions of the Cu(II) complexes of 5,10,15,20-tetraphenylporphyrin (TPP) and 2,3,7,8,12,13,17,18-octaethylporphyrin (OEP) with various oxidizing reagents were spectrophotometrically investigated in acetonitrile. The reaction products were confirmed to be the pi-cation radicals of the corresponding Cu(II)-porphyrin complexes on the basis of the electronic spectra and the redox potentials of the complexes. The rate of the electron transfer reaction between the Cu(II)-porphyrin complex and solvated Cu(2+) was determined as a function of the water concentration under the pseudo first-order conditions where Cu(2+) is in large excess over the Cu(II)-porphyrin complex. The decrease in the pseudo first-order rate constant with increasing the water concentration was attributed to the stepwise displacement of acetonitrile in [Cu(AN)(6)](2+)(AN = acetonitrile) by water, and it was concluded that only the Cu(2+) species fully solvated by acetonitrile, [Cu(AN)(6)](2+), possesses sufficiently high redox potential for the oxidation of Cu(ii)-OEP and Cu(ii)-TPP. The reactions of the Cu(II)-porphyrin complexes with other oxidizing reagents such as [Ni(tacn)(2)](3+)(tacn = 1,4,7-triazacyclononane) and [Ru(bpy)(3)](3+)(bpy = 2,2'-bipyridine) were too fast to be followed by a conventional stopped-flow technique. Marcus cross relation for the outer-sphere electron transfer reaction was used to estimate the rate constants of the electron self-exchange reaction between Cu(II)-porphyrin and its pi-cation radical: log(k/M(-1) s(-1))= 9.5 +/- 0.5 for TPP and log(k/M(-1) s(-1))= 11.1 +/- 0.5 for OEP at 25.0 degrees C. Such large electron self-exchange rate constants are typical for the porphyrin-centered redox reactions for which very small inner- and outer-sphere reorganization energies are required.  相似文献   

17.
The new, monometal substituted silicotungstates [Mn(H(2)O)(2)(gamma-SiW(10)O(35))(2)](10-) (1), [Co(H(2)O)(2)(gamma-SiW(10)O(35))(2)](10-) (2) and [Ni(H(2)O)(2)(gamma-SiW(10)O(35))(2)](10-) (3) have been synthesized and isolated as the potassium salts K(10)[Mn(H(2)O)(2)(gamma-SiW(10)O(35))(2)] x 8.25 H(2)O (K-1), K(10)[Co(H(2)O0(2)(gamma-SiW(10)O(35))(2)] x 8.25 H(2)O (K-2) and K(10)[Ni(H(2)O)(2)(gamma-SiW(10)O(35))(2)] x 13.5 H(2)O (K-3), which have been characterized by IR spectroscopy, single crystal X-ray diffraction, elemental analysis and cyclic voltammetry. Polyanions 1-3 are composed of two (gamma-SiW(10)O(36)) units fused on one side via two W-O-W' bridges and on the other side by an octahedrally coordinated trans-MO(4)(OH(2))(2) transition metal fragment, resulting in a structure with C(2v) point group symmetry. Anions 1-3 were synthesized by reaction of the dilacunary precursor [gamma-SiW(10)O(36)](8-) with Mn(2+), Co(2+) and Ni(2+) ions, respectively, in 1 M KCl solution at pH 4.5. The electrochemical properties of 1-3 were studied by cyclic voltammetry and controlled potential coulometry in a pH 5 buffer medium. The waves associated with the W-centers are compared with each other and with those of the parent lacunary precursor [gamma-SiW(10)O(36)](8-) in the same medium. They appear to be dominated by the acid-base properties of the intermediate reduced species. A facile merging of the waves for 3 is observed while those for 1 and 2 remain split. Controlled potential coulometry of the single wave of 3 or the combined waves of 1 and 2 is accompanied by catalysis of the hydrogen evolution reaction. No redox activity was detected for the Ni(2+) center in 3, whereas the Co(2+) center in 2 shows a one-electron redox process. The two-electron, chemically reversible process of the Mn(2+) center in 1 is accompanied by a film deposition on the electrode surface.  相似文献   

18.
The reaction of [Mo(3)S(4)(H(2)O)(9)](4+) with Bi(III) in the presence of BH(4)(-) (rapid), or with Bi metal shot (3-4 days), gives a heterometallic cluster product. The latter has been characterized as the corner-shared double cube [Mo(6)BiS(8)(H(2)O)(18)](8+) by the following procedures. Analyses by ICP-AES confirm the Mo:Bi:S ratio as 6:1:8. Elution from a cation-exchange column by 4 M Hpts (Hpts = p-toluenesulfonic acid), but not 2 M Hpts (or 4 M HClO(4)), is consistent with a high charge. The latter is confirmed as 8+ from the 3:1 stoichiometries observed for the oxidations with [Co(dipic)(2)](-) or [Fe(H(2)O)(6)](3+) yielding [Mo(3)S(4)(H(2)O)(9)](4+) and Bi(III) as products. Heterometallic clusters [Mo(6)MS(8)(H(2)O)(18)](8+) are now known for M = Hg, In, Tl, Sn, Pb, Sb, and Bi and are a feature of the P-block main group metals. The color of [Mo(6)BiS(8)(H(2)O)(18)](8+) in 2.0 M Hpts (turquoise) is different from that in 2.0 M HCl (green-blue). Kinetic studies (25 degrees C) for uptake of a single chloride k(f) = 0.80 M(-)(1) s(-)(1), I = 2.0 M (Hpts), and the high affinity for Cl(-) (K > 40 M(-)(1)) exceeds that observed for complexing at Mo. A specific heterometal interaction of the Cl(-) not observed in the case of other double cubes is indicated. The Cl(-) can be removed by cation-exchange chromatography with retention of the double-cube structure. Kinetic studies with [Co(dipic)(2)](-) and hexaaqua-Fe(III) as oxidants form part of a survey of redox properties of this and other clusters. The Cl(-) adduct is more readily oxidized by [Co(dipic)(2)](-) (factor of approximately 10) and is also more air sensitive.  相似文献   

19.
A kinetic study of the reaction between a diiron(II) complex [Fe(II)(2)(mu-OH)(2)(6-Me(3)-TPA)(2)](2+) 1, where 6-Me(3)-TPA = tris(6-methyl-2-pyridylmethyl)amine, and dioxygen is presented. A diiron(III) peroxo complex [Fe(III)(2)(mu-O)(mu-O(2))(6-Me(3)-TPA)(2)](2+) 2 forms quantitatively in dichloromethane at temperatures from -80 to -40 degrees C. The reaction is first order in [Fe(II)(2)] and [O(2)], with the activation parameters DeltaH(double dagger) = 17 +/- 2 kJ mol(-1) and DeltaS(double dagger) = -175 +/- 20 J mol(-1) K(-1). The reaction rate is not significantly influenced by the addition of H(2)O or D(2)O. The reaction proceeds faster in more polar solvents (acetone and acetonitrile), but the yield of 2 is not quantitative in these solvents. Complex 1 reacts with NO at a rate about 10(3) faster than with O(2). The mechanistic analysis suggests an associative rate-limiting step for the oxygenation of 1, similar to that for stearoyl-ACP Delta(9)-desaturase, but distinct from the probable dissociative pathway of methane monoxygenase. An eta(1)-superoxo Fe(II)Fe(III) species is a likely steady-state intermediate during the oxygenation of complex 1.  相似文献   

20.
The [3 + 1] reaction of [W(3)S(4)(H(2)O)(9)](4+) with [W(CO)(6)] in 2 M HCl under hydrothermal conditions (130 degrees C) gives the [W(4)S(4)(H(2)O)(12)](6+) cuboidal cluster, reduction potential 35 mV vs NHE (6+/5+ couple). The reduced form is obtained by controlled potential electrolysis. X-ray crystal structure was determined for (Me(2)NH(2))(6)[W(4)S(4)(NCS)(12)].0.5H(2)O. The W-W and W-S bond lengths are 2.840 and 2.379 A, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号