首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heterogeneous strong base catalysis for the intramolecular Tishchenko reaction of aromatic 1,2-dicarbaldehydes to the corresponding phthalides in supercritical CO2CscCO2 has been realized with mesoporous alumina containing SO4(2-) ions in the alumina framework (mesoAl2O3/SO4(2-)). Infrared spectroscopy of pyrrole adsorbed on the alumina and strong poisoning by a weak Br?nsted acid of methanol revealed that the SO4(2-) ions in the framework slightly suppressed the average strength of base sites (O2-) on mesoAl2O3/SO4(2-), but there exists a small number of strong base sites that promote the Tishchenko reaction in scCO2. Although the intramolecular Tishchenko reaction of phthalaldehyde to phthalide in scCO2 was somewhat slower than those in organic solvents such as tetrahydrofuran (THF) and benzene, the addition of a small amount of THF as a cosolvent remarkably increased the reaction rate; the reaction in the scCO2-THF system proceeded 1.5-fold faster than those in pure benzene and THF solvents.  相似文献   

2.
Lewis acid-modified mesoporous alumina was found to be an efficient carrier as well as an activator for methyltrioxorhenium (MeReO3) in olefin metathesis reactions. Especially, MeReO3 doped on zinc chloride-modified mesoporous alumina catalyzed the metathesis of olefins with functional groups such as acetoxy, alkoxycarbonyl, acyl, chlorine, and bromine groups under mild conditions. The novel heterogeneous catalytic system promoted the metathesis of not only such functionalized olefins but also simple olefins without double bond migration that was often encountered on strong solid acids. We here present a new methodology for activation of a metal complex with Lewis acidic mesoporous materials in the metathesis reactions. This novel heterogeneous catalyst would be advantageous over conventional one from the viewpoint of environmental and economical organic synthesis.  相似文献   

3.
By modifying and optimizing the procedures, which were well described and understood for the synthesis of macroporous alumina, mesoporous alumina–based film has been successfully prepared, In this paper, the orderly mesoporous Al2O3 thin film was prepared by electrochemical workstation, and via supported N‐octyltriethoxysilane (NOS) coupling agent, corrosion inhibitors be loaded into the different pore sizes of mesoporous alumina films. The physicochemical properties of this thin inhibitors carrier film were characterized. Corrosion resistance of mesoporous alumina and honeycomb ceramic macroporous alumina were compared; the conclusion shows that mesoporous alumina film can be used as good corrosion inhibitors carrier and bring out a high‐efficiency inhibition result. Simultaneously, by compared with corrosion inhibition of different pore sizes (20‐50 nm) mesoporous alumina who absorbed NOS, and a general relationship between the different mesoporous alumina pore sizes and the adsorption capacity of NOS was obtained.  相似文献   

4.
Nanometric Fe2O3 particles could be inserted inside the internal pore volume of SBA-15 mesoporous silica and mesoporous alumina supports, when Fe(III) chelates (EDTA, gluconate or citrate) were used as impregnating precursors. The oxidative degradation of the chelating anions was followed by combined TG-DTA. Strong chelate-SiOH interactions (case of bulky EDTA), favored by the mesopore curvature, yield sub-nanometric extremely well dispersed Fe2O3 particles preferentially located at the micropore mouths (confinement effect). Fe2O3 even more strongly interacts with alumina walls, generating either (Fe,Al)2O3 mixed phases or Fe-aluminate micro domains. These iron-based mesoporous alumina composites proved very active catalysts in total oxidation of phenol at ambient conditions, with extremely low iron leaching (0.2%).  相似文献   

5.
The influence of the sulfation parameters (the source and concentration of sulfate ions) and the calcination temperature on the acidic and catalytic properties of sulfated alumina in the alkylation of isobutane with butylenes and n-pentane isomerization was studied. IR spectroscopy of adsorbed probe molecules and temperature-programmed desorption of ammonia were used to characterize the acidic properties of the catalysts. An increase in the content of sulfate groups to the value corresponding to a formal value of the monolayer capacity increases the activity of alkylation and the concentration of strong Brönsted sites. The dependence of the stability of activity in alkylation on the sulfate group concentration is extreme with a maximum at the concentration close to the monolayer capacity. It was concluded from the IR spectroscopic data that the decrease in the stability of activity with the further increase in the content of sulfate groups is due to an increase in the concentration of strong Lewis sites and/or an increase in the surface density of strong Brönsted sites. The absence of the correlation between the catalytic behavior of sulfated alumina samples in n-pentane isomerization and acidity indicates that paraffin activation on these samples occurs via the non-acidic mechanism.  相似文献   

6.
采用浸渍法制备了一系列MgO改性催化剂MgO/HMCM-22, 利用X射线衍射、N2物理吸附-脱附、扫描电镜、傅里叶变换红外光谱、NH3及CO2程序升温脱附等技术对所制催化剂进行了表征. 结果表明, MgO改性后MCM-22分子筛仍保持原有的结构; 随着MgO负载量的增加, 催化剂的碱强度和碱含量显著增加, 而强酸含量明显减少, 弱酸酸位有所增加. 以Knoevenagel缩合为探针反应, 考察了所制催化剂的性能. 在优化的反应条件下, MgO/HMCM-22上苯甲醛转化率高达92.6%. 催化剂 MgO/HMCM-22和MgO/NaMCM-22的催化性能明显优于HMCM-22和MgO. 酸中心和碱中心均对该缩合反应起着重要的促进作用. MgO/HMCM-22对Knoevenagel缩合反应显示出较高的催化活性, 体现出明显的酸碱协同催化作用.  相似文献   

7.
Three mesoporous silica, SBA-16, SBA-15 and MCM-41, with different structures and porosities were synthesized via a hydrothermal method and their interactions with carbon dioxide (CO2) were investigated through thermal programmed desorption (TPD) and differential scanning calorimetry. TPD measurements provided precise assessments of the intrinsic affinity towards CO2, without the influence of moisture. All silica materials were found to exhibit intrinsic affinity towards carbon dioxide, but the surface basicity, expressed in terms of retained CO2 amount, is markedly influenced by increases in pore size and framework structures. SBA-15 displayed the highest CRC values, explained in terms of larger pore size, lower numbers of acidic out-of plane Si–OH and higher numbers of much less acidic in-plane silanols. These findings provide valuable information for a better understanding of the role of the silica structure in the intrinsic basicity, prior to further modifications for improving the affinity towards CO2 or merely for catalysis purposes involving CO2 as reagents, intermediates or products.  相似文献   

8.
This work described the effect of 3-aminopropyltrimethoxysilane (APTMS) functionalization on the mesoporous ceria nanoparticles (MCNs) toward CO2 capture. The MCN and APTMS-loaded MCN (APTMS-MCN) were prepared by the sol-gel and impregnation method, respectively. The functionalization of APTMS on the MCN enhanced the CO2 binding sites which were observed through the formation of carbamate species from the interaction of CO2 with the NH group. This resulted to the increase of CO2 adsorption capacity of APTMS-MCN with 10-fold higher than that of pristine MCNs. For MCNs, CO2 may be adsorbed onto oxygen basic, oxygen vacant, and hydroxyl sites which further formed polydentate, monodentate, bidentate, and hydrogen carbonate species. In addition to these carbonate species, the adsorption of CO2 on APTMS-MCN has largely occurred through the formation of carbamate species which further enhanced its CO2 uptake.  相似文献   

9.
Catalysis plays a central role in many fields of life, e.g., in biochemical processes, to reduce energy costs and resources in chemical industry and to decrease or even avoid environmental pollution and in energy management. Porous alumina (Al2O3) is an essential material in various applications, especially as a support material for catalysts. It is often prepared by nanocasting using porous carbon materials that serve as rigid structure matrices. In this work, an alternative way to synthesize mesoporous Al2O3 by using hydrogels as porogenic material is presented. Hydrogels can easily be patterned by light and used to imprint their structure onto alumina opening a new approach to fabricate patterned Al2O3. The hydrogels used in this work are based on poly(dimethylacrylamide) and were photo-chemically cross-linked. Followed by a nanocasting process, mesoporous alumina samples were synthesized and characterized by N2 physisorption and X-ray diffraction. The cross-linker amount in the polymer network was varied and the influence on the properties of the Al2O3 is analyzed.  相似文献   

10.
Materials possessing the high acidities of sulfated zirconia and the diffusion properties of mesoporous oxides are predicted to have numerous applications in the petrochemical industry. Because of surface deactivation and loss of structure under highly acidic conditions, there are few examples of materials which meet these specifications. In this work, mesoporous Nb oxide was treated with 1 M sulfuric acid or phosphoric acid and evaluated for their catalytic activities in the benzylation of toluene or anisole with benzyl alcohol. Characterization by XRD, nitrogen adsorption/desorption, and TEM demonstrated that the mesostructure was surprisingly stable to acid treatment. Pyridine adsorption and infrared spectroscopy (IR) showed a mixture of Lewis and Bronsted sites before and after acid treatment. Titration with a series of indicators demonstrated that sulfated mesoporous Nb oxide possesses a pKa of -8.2 and 31.784 mmol/g acid sites, roughly 100 times stronger than either bulk phosphated or sulfated niobia, which both possess pKa values in the range of -3.0. The best catalytic results in this study were achieved when using mesoporous Nb oxide treated with sulfuric acid; the conversion of benzyl alcohol with anisole to the benzylation product was 100% in 30 min, which is 200 times faster than the bulk catalyst. The extremely high activity was rationalized by the high number of strong Br?nsted sites on the surface coupled with the superior diffusion properties of the mesoporous system.  相似文献   

11.
《Solid State Sciences》2012,14(2):250-257
CO2 adsorption properties on Mg modified silica mesoporous materials were investigated. By using the methods of co-condensation, dispersion and ion-exchange, Mg2+ was introduced into SBA-15 and MCM-41, and transformed into MgO in the calcination process. The basic MgO can provide active sites to enhance the acidic CO2 adsorption capacity. To improve the amount and the dispersion state of the loading MgO, the optimized modification conditions were also investigated. The XRD and TEM characteristic results, as well as the CO2 adsorption performance showed that the CO2 adsorption capacity not only depended on the pore structures of MCM-41 and SBA-15, but also on the improvement of the dispersion state of MgO by modification. Among various Mg modified silica mesoporous materials, the CO2 adsorption capacity increased from 0.42 mmol g−1 of pure silica SBA-15 to 1.35 mmol g−1 of Mg–Al–SBA-15-I1 by the ion-exchange method enhanced with Al3+ synergism. Moreover, it also increased from 0.67 mmol g−1 of pure silica MCM-41 to 1.32 mmol g−1 of Mg–EDA–MCM-41-D10 by the dispersion method enhanced with the incorporation of ethane diamine. The stability test by 10 CO2 adsorption/desorption cycles showed Mg–urea–MCM-41-D10 possessed quite good recyclability.  相似文献   

12.
A novel strategy was proposed for the fabrication of high‐performance acidic mesoporous poly ionic liquids catalyst. In this work, mesoporous poly ionic liquids (MPILs) were synthesized with P123 (PEO20PPO70PEO20) served as pore‐forming agent. Then, MPILs were treated with PW3? anion exchange, thereby fabricating PW/MPIL‐S(x). MPIL and PW/MPIL‐S(x) were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), Thermogravimetric analysis (TA), N2 adsorption–desorption and Fourier transform infrared (FT‐IR) spectra and X‐ray photoelectron spectroscopy (XPS) spectra. The effect of solvent and concentration of P123 on the morphology and mesoporous structure of MPILs were investigated systematically. And the results show that MPILs were featured with mesoporous channel structure, high surface area (up to 737 m2/g) and large pore volumes (1.16 cm3/g), which benefit heterogeneous phase reaction (such as, alkylation of styrene with o‐xylene). In the alkylation reaction, under optimal reaction conditions, the catalyst PW/MPIL‐THF (4.0 g) shows high conversion of styrene (100%) and PXE yield (96.21%), demonstrating the excellent catalytic activities. Furthermore, PW/MPIL‐S(x) are easy to be separated from the catalytic system by filtration and show no obvious decrease in catalytic activity after 6 cycle runs. The obtained PW/MPIL‐S(x) catalyst exhibit high thermal and mechanical stability as well, indicating extensive application in high temperature acidic catalysis. This work might open up a new method for the synthesizing of porous polymer catalysts in the future.  相似文献   

13.
A range of potassium-based alumina sorbents were fabricated by impregnation of alumina with K2CO3 to examine the effects of the structural and textural properties of alumina on the CO2 sorption and regeneration properties. Alumina materials, which were used as supports, were prepared by calcining alumina at various temperatures (300, 600, 950, and 1,200 °C). The CO2 sorption and regeneration properties of these sorbents were examined during multiple tests in a fixed-bed reactor in the presence of 1 vol% CO2 and 9 vol% H2O. The regeneration capacities of the potassium-based alumina sorbents increased with increasing calcination temperature of alumina. The formation of KHCO3 increased with increasing calcination temperature during CO2 sorption, whereas the formation of KAl(CO3)(OH)2, which is an inactive material, decreased. These results is due to the fact that the structure of alumina by the calcination temperature is related directly to the formation of the by-product [KAl(CO3)(OH)2]. The structure of alumina plays an important role in enhancing the regeneration capacity of the potassium-based alumina sorbent. Based on these results, a new potassium-based sorbent using δ-Al2O3 as a support was developed for post-combustion CO2 capture. This sorbent maintained a high CO2 capture capacity of 88 mg CO2/g sorbent after two cycles. In particular, it showed a faster sorption rate than the other potassium-based alumina sorbents examined.  相似文献   

14.
Treatment of mesoporous silicate SBA-15 with Sm[N(SiMe3)2]3 led to the formation of a novel organolanthanide/inorganic hybrid material [SBA-15]Sm[N(SiMe3)2]x via abstraction of N(SiMe3)2 by terminal silanol groups and subsequent surface silylation. The hybrid material was characterized by elemental analyses, IR spectroscopy, X-ray diffraction, and nitrogen sorption, indicating a successful tailoring inside the silicate SBA-15 and the maintenance of the well-ordered mesostructure. This hybrid material is a promising heterogeneous catalyst for the Tishchenko reaction, where it is superior to the homogeneous correspondent in deactivation behavior, reusability and relative tolerance to oxygen, particularly in the control of selectivity of mixed Tishchenko reaction due to the steric hindrance and the diffusion control derived from the surface confinement.  相似文献   

15.
Mesoporous aluminas with average pore sizes of 4.3–7.8 nm were prepared by anodization of an aluminum film (AAO), and by a sol–gel templating method (TPL). In addition to a commercial alumina and sulfated TPL, the aluminas were used as supports for cyclopentadienyl zirconocene dichloride (Cp2ZrCl2) and trimethyl(η5‐pentamethylcyclopentadienyl)zirconium (Cp*ZrMe3) and tested in the polymerization of ethylene. The metallocenes supported on the alumina prepared with the templating method and its sulfated modification exhibited polymerization activities of 440 and 350 kgPE/(molZr × h × bar), respectively, comparable to that obtained with silica‐supported metallocenes (390 kgPE/(molZr × h × bar)). The acid site distribution of the aluminas was studied with FTIR and temperature programmed desorption (TPD) of pyridine, and also the amount of medium and strong acid sites was determined gravimetrically from the adsorption of pyridine. Relative to the surface area, AAO with the highest amount of acid sites (2.10 μmolpy/m) adsorbed Cp2ZrCl2 and Cp*ZrMe3 the most. Study of the polymers' morphology with a scanning electron microscope revealed polyethylene nanofibers in all the polymer samples, also in those obtained from the reference polymerizations with homogeneous Cp2ZrCl2 and Cp*ZrMe3. This finding suggests that a catalyst support with a tubular pore structure is not a prerequisite for the formation of polymer nanofibers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4002–4012, 2007  相似文献   

16.
This review describes the preparation, characterization and application of KNH2 loaded on alumina and KF loaded on alumina. These strong solid bases catalyze a variety of organic reactions in a very selective manner. The reactions include isomerizations of alkenes and alkynes, dimerization of alkynes, Tishchenko reaction, and the reaction of silanes to form of Si–C, Si–N and Si–O bonds.  相似文献   

17.
A new method has been developed for the preparation of sulfated titania (S-TiO2) supported on mesoporous silica. The use of direct exchange of metal containing precursors for the surfactants in the as-synthesized MCM-41 substrate produced a product with high sulfur content without serious blockage of the pore structure of MCM-41. The pore sizes and volumes of the resultant S-TiO2/MCM-41 composites were found to vary markedly with the loading of TiO2. The strong acidic character of the composites obtained was examined by using them as catalysts for the esterification of acetic acid and n-butanol.  相似文献   

18.
This review describes the preparation, characterization and application of KNH2 loaded on alumina and KF loaded on alumina. These strong solid bases catalyze a variety of organic reactions in a very selective manner. The reactions include isomerizations of alkenes and alkynes, dimerization of alkynes, Tishchenko reaction, and the reaction of silanes to form of Si–C, Si–N and Si–O bonds.  相似文献   

19.
We present a new processing scheme for the deposition of microporous, sol–gel derived silica membranes on inexpensive, commercially available anodic alumina (Anodisk™) supports. In a first step, a surfactant-templated mesoporous silica sublayer (pore size 2–6 nm) is deposited on the Anodisk support by dip-coating, in order to provide a smooth transition from the pore size of the support (20 or 100 nm) to that of the membrane (3–4 Å). Subsequently, the microporous gas separation membrane layer is deposited by spin-coating, resulting in a defect-free dual-layer micro-/mesoporous silica membrane exhibiting high permeance and high selectivity for size selective gas separations. For example, in the case of CO2:N2 separation, the CO2 permeance reached 3.0 MPU (1 MPU = 10−7 mol m−2 s−1 Pa−1) coupled with a CO2:N2 separation factor in excess of 80 at 25 °C. This processing scheme can be utilized for laboratory-scale development of other types of microporous or dense inorganic membranes, taking advantage of the availability, low cost and low permeation resistance of anodic alumina (or other metal oxide) meso- and macroporous supports.  相似文献   

20.
Supercritical CO2 (scCO2) has been used as a reaction medium for the photocatalytic oxidative degradation of n-octanol on a partially desilanized hydrophobic suspension of TiO2 as photocatalyst. Hydrophobic sites on the catalyst surface are necessary to maintain a sustained suspension, and hence surface-mediated interfacial electron exchange, in this non-polar medium. The reaction rates for photooxidative degradation, ultimately to complete mineralization, depend only weakly on temperature and pressure of the supercritical fluid near the critical point. Product distributions were monitored in situ by on-line gas chromatographic analysis, which provides a convenient and rapid method for comparisons and optimization of the reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号