首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model is presented which describes the radial distributions of the plasma density, electric potential, current density, and magnetic field in the positive column of a stationary glow discharge not in contact with the longitudinal walls of the discharge chamber. In this model, the compression of the positive column is provided by the azimuthal magnetic field created by the discharge current. The value of, the discharge current is obtained for the case where charged-particle diffusion is balanced by the actions of the radial electric field and the magnetic pinch effect. The radial distributions of plasma parameters are also calculated for the case of high-current glow discharges where charged-particle diffusion can be ignored  相似文献   

2.
It is shown that a metal current-carrying cylinder immersed into a cold magnetized plasma is a waveguide structure, in which coupled bulk ordinarily polarized and surface extraordinarily polarized waves can propagate along the azimuthal direction. Their interaction, stipulated by the fact that besides the longitudinal component, the external magnetic field has also a weak azimuthal component, is studied. Analytical expressions for the corrections to the eigenfrequency of these waves, stipulated by the effect of a constant azimuthal magnetic field, are obtained for the case of a uniform plasma density. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 51, No. 2, pp. 122–135, February 2008.  相似文献   

3.
A homogeneously rotating plasma disk can be formed in a radially directed Ar-arc discharge at reduced pressure with an externally applied axial magnetic field. The radial pressure distribution is measured, as well as the emitted continuum radiation and the arc voltage. With these experimental values profiles of temperature, radial and azimuthal current density, and flow velocity in the disk are evaluated. Viscosity determines the flow pattern essentially. The effects of magnetic field and rotational motion on the discharge are investigated. The disk exhibits at nonrigid rotation a strong centrifugal force and a minor Coriolis force. A weak double vortex is found to develop in the meridional plane. The electric field in the discharge is altered by the azimuthal plasma flow.  相似文献   

4.
We investigated the AC loss characteristics of a low temperature NbTi AC wire by measuring the AC transport current losses in the external AC magnetic field whose components are the longitudinal and transverse ones. The measurement results showed that the AC losses were significantly dependent on the directions and magnitudes of the external longitudinal field component. The AC losses caused by the longitudinal and azimuthal field components were estimated by our previously derived model. The theoretical results well explained the dependence of the AC losses on the longitudinal field components. It was also shown that the AC losses can be substantially reduced by the proper choice of the twisting way.  相似文献   

5.
带辅助磁场等离子体断路开关的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
 利用全电磁网格粒子方法模拟了外加磁场对等离子体断路开关(POS)断路性能的影响,给出了电压倍增系数与外加磁场的关系曲线。数值模拟表明,外加轴向磁场线圈必须放在同轴型POS阴极的同侧才能显著改善开关的断路性能;当外加角向磁场时,内电极为阴、阳极的同轴型POS的断路性能都得到了不同程度的改善。随着外加磁场的增大,电压倍增系数将达到饱和。  相似文献   

6.
Based on fluid equations,we show a time-dependent self-consistent nonlinear model for void formation in magnetized dusty plasmas.The cylindrical configuration is applied to better illustrate the effects of the static magnetic field,considering the azimuthal motion of the dusts.The nonlinear evolution of the dust void and the rotation of the dust particles are then investigated numerically.The results show that,similar to the unmagnetized one-dimensional model,the radial ion drag plays a crucial role in the evolution of the void.Moreover,the dust rotation is driven by the azimuthal ion drag force exerting on the dust.As the azimuthal component of ion velocity increases linearly with the strength of the magnetic field,the azimuthal component of dust velocity increases synchronously.Moreover,the angular velocity gradients of the dust rotation show a sheared dust flow around the void.  相似文献   

7.
In the present work, the influence of the magnetic field of current extracting systems on motion of electrons and envelope of the electron beam transported in preliminary created plasma in an external longitudinal magnetic field to a current-conducting target is examined. The field generated by the electron beam, the external magnetic field, and the magnetic field created by the current running down the target during electron deposition are taken into account. Configuration portraits of the beam on the target are constructed as functions of the beam current, degree of current neutralization, external field strength, and orientation of the current extractors. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 44–47, May, 2006.  相似文献   

8.
The effect of a uniform axial magnetic field on the stability of the flow of an incompressible viscous electrically conducting fluid between two arbitrarily spaced concentric circular cylinders driven by a constant azimuthal pressure gradient is studied. The linearized stability equations for steady axisymmetric disturbances form an eigenvalue problem, which are solved by using a classical Runge–Kutta scheme combined with a shooting method, termed unit disturbance method. It is observed that for fixed gap width, the magnetic field has a stabilizing influence on the flow for both perfectly conducting and nonconducting walls. It is also found that for a given value of magnetic parameter, stabilization is more as the gap width increases. Further the electrically nonconducting walls are found to be more destabilizing than the perfectly conducting walls. The critical value of the radii ratio (0<η<1) beyond which the first unstable mode becomes nonaxisymmetric is determined for various values of the magnetic parameter.  相似文献   

9.
The object of the present paper is to investigate the radial motion of a solid spherical body, assumed to be homogeneous, isotropic and elastic, in presence of a magnetic field in the azimuthal direction. The body is assumed to be in a state of initial stress which is hydrostatic in nature. This theory of radial motion of a solid spherical body in a magnetic field has been utilised to find the small radial motion of a solid Earth assumed to be homogeneous isotropic elastic sphere in presence of a magnetic field in the azimuthal direction. Considering the effect of gravity and the initial stress produced by slow process of creep due to extra masses over the surface of the Earth, the fundamental equations of motion are derived which are non-linear in character and are solved. The times of a desired radial displacement are calculated in presence of a magnetic field only and in presence of the same magnetic field, initial stress and gravitational field, which are compared and exhibited numerically.  相似文献   

10.
The steady-state electric-current distribution and the magnetic pressure in a uniform conducting medium, flowing in a cylindrical configuration between two circular electrodes, was determined by solving the magnetic field transport equation with a superimposed axial magnetic field. This medium models the interelectrode plasma of the diffuse mode metal vapor vacuum arc. The results show the following. a) The electric current and the flux of the poloidal magnetic field are constricted at the anode side of the flowing plasma. Most of the constriction takes place within a boundary layer, with a characteristic length of 1/Rme, where Rme is the magnetic-Reynolds number for axial electron flow. b) The electric-current constriction inversely depends on K?, where K? is the azimuthal surface current density which produces the axial magnetic field. c) The magnetic-pressure profile shows a radial pinch force in most of the interelectrode region, but in the anode boundary layer it is axially directed, thus retarding the plasma flow. d) The peak of the magnetic pressure is at the anode, and its amplitude directly depends on K?. As K? increases, the peak location moves toward the anode center.  相似文献   

11.
The polarization of emission lines formed in a medium immersed in external electric and magnetic fields is studied. The electric field is assumed to be quadrupolar in nature, while the magnetic field is uniform. We show that the quadrupole electric field produces line splitting which is characteristically different from the Zeeman effect. While the line components emitted along the quantization axis are circularly polarized in Zeeman effect, they are, in contrast, linearly polarized in the case of a pure quadrupole electric field. The emission perpendicular to the quantization axis produces three linearly polarized components in Zeeman effect, whereas only two linearly polarized components are observed in the case of quadrupole electric fields. Lack of azimuthal symmetry in the quadrupole electric field leads to polarized line components which appear quite differently for different azimuthal angles of the line of sight.  相似文献   

12.
分析了电磁波以任意角度入射到有限磁场中的激光等离子体通道天线(LPCA)时的电磁散射特性。根据LPCA的工作原理建立了其电磁分析模型,推导出广义柱坐标系下各向异性磁化等离子体中纵向分量所满足的波动方程和纵向场与横向场的关系,得到LPCA和周围媒质中的电磁场,利用边界切向电磁场连续,得出了散射系数方程。通过计算实例,将结果与文献结果比较,吻合较好。该研究结果预期可应用于高功率微波武器系统的研究。  相似文献   

13.
Shape distortions of magneto-optical resonances in emission of an extended source are considered. The shape deformation of the magneto-optical structures is shown to be created by a longitudinal spatial inhomogeneity of the magnetic field. A simple procedure of taking into account distortions and of determining positions of resonances on the magnetic field scale and their widths is proposed.  相似文献   

14.
A study is made of the motion of a particle injected longitudinally into a rotationally symmetric magnetic field increasing linearly in an arbitrarily sharp way on the axis of symmetry. By expanding the magnetic potential in a series in the vicinity of the line of force from which the particle starts, and by restricting our considerations to linear terms, we arrive at a single linearized equation of motion for the radial motion, as we assume the longitudinal motion to be uniform. The linearized equation can be solved exactly. Numerical evaluation is carried out (with the linearized line of force) for several different slopes of the field, and compared for similar cases with a numerical evaluation of an exact nonlinear problem. The method described in the paper can also be applied to cases with more general initial conditions, when the particle also moves with an azimuthal velocity.The author extends his thanks for valuable advice, discussions and encouragement to Dr. M. Seidl, on whose incentive the work was undertaken and who is the author of equation (13).  相似文献   

15.
We study the stability of cylindrical Taylor-Couette flow in the presence of combined axial and azimuthal magnetic fields, and show that adding an azimuthal field profoundly alters the previous results for purely axial fields. For small magnetic Prandtl numbers Pm, the critical Reynolds number Re(c) for the onset of the magnetorotational instability becomes independent of Pm, whereas for purely axial fields it scales as Pm-1. For typical liquid metals, Re(c) is then reduced by several orders of magnitude, enough that this new design should succeed in realizing this instability in the laboratory.  相似文献   

16.
In experiments on complex plasmas, afixed strata region in which the levitation of dust structures is observed is investigated using the method of probing by calibrated dust particles of different sizes in an applied magnetic field under elevated pressures. The measured azimuthal velocity of the probing particles corresponds to the action of the ion drag force for 4 μm-size particles and to the entrainment by the rotating gas owing to the electron vortex flow inside the strata for 1 μm-size particles. Extrapolation to pressures and magnetic fields in which the rotation inversion of dust structures is observed in experiments shows that the ion drag is the dominating force causing rotation with a negative projection of the angular velocity onto the magnetic induction.  相似文献   

17.
We investigate via molecular dynamics simulations the propagation of solitons in a two-dimensional many-body system characterized by Yukawa interaction potential. The solitons are created in an equilibrated system by the application of electric field pulses. Such pulses generate pairs of solitons, which are characterized by a positive and negative density peak, respectively, and which propagate into opposite directions. At small perturbation, the features propagate with the longitudinal sound speed, from which an increasing deviation is found at higher density perturbations. An external magnetic field is found to block the propagation of the solitons, which can, however, be released upon the termination of the magnetic field and can propagate further into directions that depend on the time of trapping and the magnetic field strength.  相似文献   

18.
The Full-Zone model of a liquid bridge encountered in crystal growth is analyzed via linear stability analysis and three-dimensional spectral element simulations, neglecting gravitational forces, for Prandtl number 0.02. The base state is axisymmetric and steady state. Linear stability predicts the character of flow transitions and the value of Re FZ , the thermocapillary Reynolds number, at which instabilities occur. Previous linear stability findings show that application of a steady, axial magnetic field stabilizes the base state. Previous three-dimensional simulations with no magnetic field predict a first transition that agrees well with linear stability theory. However, these simulations also demonstrated that continued time integration at just slightly higher Re FZ leads to what appears to be periodic flow. Closer inspection and comparison with linear stability theory revealed that this apparent periodicity was actually competition between two steady modes with different axial symmetries. Here an axial magnetic field is applied in three-dimensional simulations and it is verified that the magnetic field does have the intended effect of stabilizing the flow and removing modal competition. The azimuthal flow shows excellent agreement with eigenvectors predicted by linear stability theory.  相似文献   

19.
The spin-orbit interaction (SOI) of light generated by tight focusing in optical tweezers is regularly employed in generating angular momentum - both spin and orbital - the effects being extensively observed in trapped mesoscopic particles. Specifically, the transverse spin angular momentum (TSAM), which arises due to the longitudinal component of the electromagnetic field generated by tight focusing is of special interest, both in terms of fundamental studies and associated applications. This study provides an effective and optimal strategy for generating TSAM in optical tweezers by tightly focusing first-order radially and azimuthally polarized vector beams with no intrinsic angular momentum (AM) into a refractive index stratified medium. The choice of such input fields ensures that the longitudinal spin angular momentum (LSAM) arising from the electric (magnetic) field for the radial (azimuthal) polarization is zero. As a result, the effects of the electric and magnetic TSAM are exclusively observed separately in the case of input first-order radially and azimuthally polarized vector beams on single optically trapped birefringent particles. This research opens up new and simple avenues for exotic and complex particle manipulation in optical tweezers.  相似文献   

20.
The stability of differentially-rotating cylindrical plasmas in the axial homogeneous magnetic field is studied in the framework of one-fluid dissipative magnetohydrodynamics. The dispersion relation of small-scale axisymmetric perturbations, taking into account the effects of the plasma thermal stratification, its resistivity and its viscosity, is derived. In the limiting cases of negligible resistivity and of negligible viscosity, the criteria of plasma stability are obtained. It is shown that in the case of small viscosity, the azimuthal flow of resistive plasma in the axial magnetic field is unstable due to the buoyancy effect if both the plasma pressure and its entropy either increase or decrease in the radial direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号